八上數學三角形手抄報

  跨進八年級大門後,才發現我們的數學書上,基本被幾何圖形佔據,其中三角形是最基礎的幾何圖形。下面和小編一起來欣賞吧.

  資料1:

  一、三角形相關概念

  1.三角形的概念

  由不在同一直線上的三條線段首尾順次連結所組成的圖形叫做三角形

  要點:①三條線段;②不在同一直線上;③首尾順次相接.

  2.三角形的表示

  通常用三個大寫字母表示三角形的頂點,如用A、B、C表示三角形的三個頂點時,此三角形可記作△ABC,其中線段AB、BC、AC是三角形的三條邊,∠A、∠B、∠C分別表示三角形的三個內角.

  3.三角形中的三種重要線段

  三角形的角平分線、中線、高線是三角形中的三種重要線段.

  (1)三角形的角平分線:三角形一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線.

  注意:①三角形的角平分線是一條線段,可以度量,而角的平分線是經過角的頂點且平分此角的一條射線.

  ②三角形有三條角平分線且相交於一點,這一點一定在三角形的內部.

  ③三角形的角平分線畫法與角平分線的畫法相同,可以用量角器畫,也可通過尺規作圖來畫.

  (2)三角形的中線:在一個三角形中,連結一個頂點和它的對邊中點的線段叫做三角形的中線.

  注意:①三角形有三條中線,且它們相交三角形內部一點.

  ②畫三角形中線時只需連結頂點及對邊的中點即可.

  (3)三角形的高線:從三角形一個頂點向它的對邊作垂線,頂點和垂足間的限度叫做三角形的高線,簡稱三角形的高.

  注意:①三角形的三條高是線段

  ②畫三角形的高時,只需要向對邊或對邊的延長線作垂線,連結頂點與垂足的線段就是該邊上的高.

  (二)三角形三邊關係定理

  ①三角形兩邊之和大於第三邊,故同時滿足△ABC三邊長a、b、c的不等式有:a+b>c,b+c>a,c+a>b.

  ②三角形兩邊之差小於第三邊,故同時滿足△ABC三邊長a、b、c的不等式有:a>b-c,b>a-c,c>b-a.

  注意:判定這三條線段能否構成一個三角形,只需看兩條較短的線段的長度之和是否大於第三條線段即可

  (三)三角形的穩定性

  三角形的三邊確定了,那麼它的形狀、大小都確定了,三角形的這個性質就叫做三角形的穩定性.例如起重機的支架採用三角形結構就是這個道理.

  設計圖

  資料2:

  初中數學公式大全

  1 過兩點有且只有一條直線

  2 兩點之間線段最短

  3 同角或等角的補角相等

  4 同角或等角的餘角相等

  5 過一點有且只有一條直線和已知直線垂直

  6 直線外一點與直線上各點連線的所有線段中,垂線段最短

  7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行

  8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9 同位角相等,兩直線平行

  10 內錯角相等,兩直線平行

  11 同旁內角互補,兩直線平行

  12兩直線平行,同位角相等

  13 兩直線平行,內錯角相等

  14 兩直線平行,同旁內角互補

  15 定理 三角形兩邊的和大於第三邊

  16 推論 三角形兩邊的差小於第三邊