結晶機制
[拼音]:yueqiu yundong lilun
[英文]:theory of the motion of the Moon
月球是離地球最近的天體。古代人用月球的位相變化計量時間,所以非常注意月球的運動。據《開元佔經》所載,中國戰國時代石申就已經知道月球運動的速率是有變化的,時常偏離到黃道以南或以北,稱速度較快時為“朓”,較慢時為“側匿”。希臘天文學家喜帕恰斯首先提出月球軌道是偏心圓,其拱線在移動。他還測定了月球軌道對黃道的傾角和交點的運動。托勒密發現由太陽引起的月球運動的最大黃經攝動項“出差”(約1°27)。在以後一千多年中,對於月球運動規律的認識並無多大進展。直到十六世紀第谷才在觀測中發現了二均差(約0°66)和週年差(約11┡)。
1687年,牛頓提出著名的萬有引力定律,從力學原理上解釋了月球運動的規律。他在著名的《自然哲學的數學原理》一書中證明,由於太陽攝動力的作用產生了月球運動的主要週期差和近地點的進動;他還得出過去的觀測中沒有發現的其他週期差。牛頓未完成的月球運動理論工作在十八世紀由尤拉、克萊洛、達朗貝爾和拉普拉斯等人繼續進行。到十九世紀末,一共提出了幾十種研究月球運動的方法,其中較好的有十幾種。
影響月球運動的因素很多,其中最主要的是地球和太陽的引力。因此,通常把月球運動問題的求解分為兩步:第一步先考慮地球和太陽的主要影響,稱之為“主問題”,也就是假定太陽、地球和月球三者都是質點,地月系質量中心沿固定的開普勒橢圓軌道繞著太陽運動,從而求出月球相對於地球的軌道。主問題的解求出以後,第二步再考慮其餘因素對主問題的解的攝動影響(見攝動理論。需要考慮的攝動有:
(1)由於地球和月球不是均勻正球體而引起的形狀攝動;
(2)行星的引力攝動;
(3)由太陽偏離主問題中的理想橢圓而產生的影響;
(4)潮汐摩擦;
(5)相對論效應;
(6)由黃道座標系的轉動而引起的附加攝動等。
在十八世紀,根據拉普拉斯理論計算出來的月球位置歷表,準確度只到0奞5。到了十九世紀,這個歷表已不能滿足實際需要,因此,提高月球運動理論的精度,就成為天體力學的一個主要課題。當時曾提出了許多理論,其中最突出的是漢森和德洛內的理論。漢森用一個大小和形狀不變的、並在空間轉動的橢圓作為中間軌道,然後計算該橢圓平近點角的攝動以及月球在向徑和橢圓平面法向上的座標差。漢森根據這個理論建立的月球運動表在1862~1922年期間成為各國天文年曆計算月球歷表的依據。德洛內月球理論採用瞬時橢圓軌道要素為基本變數,並將它改變為正則共軛變數,利用分析力學中的正則變換逐個消去哈密頓函式中的週期項。德洛內花費了近二十年時間,通過上千次變換,消除了400多個週期項,建立了一種純文字展開的月球運動理論。根據這種理論計算的月球歷表精度並不很高(收斂性差),但是他創立的方法為天體力學的變換理論奠定了基礎,對天體力學的發展有重大影響。
十九世紀末,希爾發展了尤拉月球理論中關於以直角座標為基本變數和旋轉座標系的概念,建立了一種新的月球運動理論。其特點是:
(1)用一個考慮到太陽主要影響的週期軌道作為中間軌道;
(2)採用按太陽平均角速度旋轉的座標系統作為參考系統,使太陽的座標有較為簡單的表示式;
(3)計算直角座標的攝動,使運動方程具有純代數的對稱形式,這樣既便於編算月球的歷表,又可避免攝動函式按橢圓要素展開的繁雜運算;
(4)在攝動函式展開中,對引數m(太陽與月球平均角速度之比)一開始就用數值代入,其他引數則保持文字形式。由於引數m的數值測定得極為精確,這樣處理既能保證很高精度,又避免了展開過程中許多繁雜的運算,但缺點是沒有提供對 m的偏導數。希爾還精確計算出月球近地點的進動。J.C.亞當斯用類似的方法計算了交點的運動,解決了以前月球理論所難以解決的問題。二十世紀初,E.W.布朗使用希爾和J.C.亞當斯的方法,並加了一個微分改正過程,使表示式係數的有效位數提高了一倍,最後他編制了《月球運動表》。1923年起,國際上天文年曆中的月球歷表就採用布朗《月球運動表》進行計算。
五十年代以來,隨著空間技術的發展以及雷達和鐳射測距等新觀測手段的運用,精度為幾公里量級的原有月球歷表已不能滿足需要,建立一個具有米級甚至更高精度的月球歷表的任務提到日程上來。電子計算機問世以後,埃克特在希爾-布朗理論的基礎上進行了一系列的工作,例如重新整理黃緯攝動項和月球直角座標到球座標的轉換,採用曆書時和新天文常數系統。這些結果成為目前計算天文年曆月球歷表的依據。埃克特雖然改善了按希爾-布朗理論計算出來的月球歷表的精度,但仍沒有根本性的提高,因此必須尋求建立新的理論的途徑。在建立新的月球運動理論的工作中,最突出的是德普里特、亨拉德和羅姆所從事的分析月球歷表工作。他們吸取了德洛內方法的純文字展開的優點,利用電子計算機,根據李變換,在更高精度上重新推演了德洛內理論。所得結果在分析結構上比德洛內理論更完整,在數值精度上比希爾理論更高。可是黃經表示式中的少數項仍有 2~10米的誤差。
在月球運動研究中曾出現一些富有意義的問題,並導致某些重要現象的發現。例如,哈雷根據對古代日食資料的分析發現月球運動存在長期加速,即月球平黃經包含加速度項σT2(T為按初始曆元起計的世紀數),長期加速度係數 σ 約為11″。以後拉普拉斯也發現類似現象,他認為這是由地球軌道偏心率的長期變化引起的,並計算出σ 理論值為10.4湊巧與觀測結果符合。J.C.亞當斯通過更嚴密的計算得出σ 的理論值應為5.72,只及觀測值的一半。這個問題引起了人們的注意。一直到二十世紀二、三十年代,紐康、德西特和瓊斯對月球的運動進行了大量細緻的分析和計算,才得到比較滿意的結果,認為月球長期加速度中留下的一半可用地球潮汐摩擦來解釋。潮汐摩擦使地球自轉速度逐漸變慢,反映到月球運動上,就產生了月球黃經長期加速的表觀現象。對月球的長期加速度反覆研究,終於發現了地球自轉的不均勻性。地球自轉不均勻性使得天體的理論位置與實際位置產生偏差,因為月球是視運動最快的自然天體,這種差別就更為明顯。人們因為長期不瞭解地球自轉的不均勻性,一直認為是月球理論本身存在缺陷。1960年以後,天體歷表採用曆書時代替世界時進行計算,月球理論這一“缺陷”才得到彌合;而對月球運動的觀測和研究的結果,則被用來確定世界時對曆書時的改正值。
參考書目
布朗著,盧景貴譯:《月理初編》,百城書局,1936。(E.W.Brown,An Introductory Treatise on the LunarTheory,Cambridge Univ.Press,London,1895.)