初三二次函式知識點

  二次函式知識點在初中數學中是十分重要的一個章節。今天小編就與大家分享:,希望對大家的學習有幫助!

  一

  I.定義與定義表示式

  一般地,自變數x和因變數y之間存在如下關係:y=ax^2+bx+c

  ***a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.***則稱y為x的二次函式。

  二次函式表示式的右邊通常為二次三項式。

  II.二次函式的三種表示式

  一般式:y=ax^2+bx+c***a,b,c為常數,a≠0***

  頂點式:y=a***x-h***^2+k [拋物線的頂點P***h,k***]

  交點式:y=a***x-x₁******x-x ₂*** [僅限於與x軸有交點A***x₁ ,0***和 B***x₂,0***的拋物線]

  注:在3種形式的互相轉化中,有如下關係:

  h=-b/2a k=***4ac-b^2***/4a x₁,x₂=***-b±√b^2-4ac***/2a

  III.二次函式的影象

  在平面直角座標系中作出二次函式y=x^2的影象,可以看出,二次函式的影象是一條拋物線。

  IV.拋物線的性質

  1.拋物線是軸對稱圖形。對稱軸為直線 x = -b/2a。

  對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸***即直線x=0***

  2.拋物線有一個頂點P,座標為:P *** -b/2a ,***4ac-b^2***/4a ***當-b/2a=0時,P在y軸上;當Δ= b^2-4ac=0時,P在x軸上。

  3.二次項係數a決定拋物線的開口方向和大小。

  當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。

  4.一次項係數b和二次項係數a共同決定對稱軸的位置。

  當a與b同號時***即ab>0***,對稱軸在y軸左;

  當a與b異號時***即ab<0***,對稱軸在y軸右。

  5.常數項c決定拋物線與y軸交點。

  拋物線與y軸交於***0,c***

  6.拋物線與x軸交點個數

  Δ= b^2-4ac>0時,拋物線與x軸有2個交點。

  Δ= b^2-4ac=0時,拋物線與x軸有1個交點。

  Δ= b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數***x= -b±√b^2-4ac 的值的相反數,乘上虛數i,整個式子除以2a***

  V.二次函式與一元二次方程

  特別地,二次函式***以下稱函式***y=ax^2+bx+c,

  當y=0時,二次函式為關於x的一元二次方程***以下稱方程***,即ax^2+bx+c=0

  此時,函式影象與x軸有無交點即方程有無實數根。函式與x軸交點的橫座標即為方程的根。

  1.二次函式y=ax^2,y=a***x-h***^2,y=a***x-h***^2 +k,y=ax^2+bx+c***各式中,a≠0***的圖象形狀相同,只是位置不同。

  當h>0時,y=a***x-h***^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

  當h<0時,則向左平行移動|h|個單位得到.

  當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a***x-h***^2 +k的圖象;

  當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a***x-h***^2+k的圖象;

  當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a***x-h***^2+k的圖象;

  當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a***x-h***^2+k的圖象;

  因此,研究拋物線 y=ax^2+bx+c***a≠0***的圖象,通過配方,將一般式化為y=a***x-h***^2+k的形式,可確定其頂點座標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

  2.拋物線y=ax^2+bx+c***a≠0***的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點座標是***-b/2a,[4ac-b^2]/4a***.

  3.拋物線y=ax^2+bx+c***a≠0***,若a>0,當x ≤ -b/2a時,y隨x的增大而減小;當x ≥ -b/2a時,y隨x的增大而增大.若a<0,當x ≤ -b/2a時,y隨x的增大而增大;當x ≥ -b/2a時,y隨x的增大而減小.

  4.拋物線y=ax^2+bx+c的圖象與座標軸的交點:

  ***1***圖象與y軸一定相交,交點座標為***0,c***;

  ***2***當△=b^2-4ac>0,圖象與x軸交於兩點A***x₁,0***和B***x₂,0***,其中的x1,x2是一元二次方程ax^2+bx+c=0

  ***a≠0***的兩根.這兩點間的距離AB=|x₂-x₁|

  當△=0.圖象與x軸只有一個交點;

  當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.

  5.拋物線y=ax^2+bx+c的最值:如果a>0***a<0***,則當x= -b/2a時,y最小***大***值=***4ac-b^2***/4a.

  頂點的橫座標,是取得最值時的自變數值,頂點的縱座標,是最值的取值.

  6.用待定係數法求二次函式的解析式

  ***1***當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

  y=ax^2+bx+c***a≠0***.

  ***2***當題給條件為已知圖象的頂點座標或對稱軸時,可設解析式為頂點式:y=a***x-h***^2+k***a≠0***.

  ***3***當題給條件為已知圖象與x軸的兩個交點座標時,可設解析式為兩根式:y=a***x-x₁******x-x₂******a≠0***.

  7.二次函式知識很容易與其它知識綜合應用,而形成較為複雜的綜合題目。因此,以二次函式知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.

  二

  首先我們要學習二次函式,就應該先了解什麼叫做二次函式,一般來說,下圖所表示的形式一般就是二次函式:

  在這裡我們需要注意的就是a是不等於0的,而b、c可以等於0。通過觀察二次函式我們可以發現,二次函式的等號的左邊是函式,而右邊是關於自變數X的二次等式,X的最高次數是2。而abc都是一個常數,其中,我們把a稱之為二次項係數,其不為零。而b是一次項係數,c是常數項。

  二次函式最為基本的形似,就是當b、c都等於0的時候,這個時候我們可以看一下二次函式基本形式的一些相關性質,如下圖所示

  無論是基本形式的二次函式,還是其他形式的二次函式,有一些知識點都是共同的,在我們學習二次函式的時候都會用到的。一個就是a的符號,因為a的符號確定了影象的開口方向是向上的還是向下的。

  這裡需要給同學們一個建議,無論是學習二次函式還是其他什麼別的函式,學習函式最基本的就是畫影象。很多時候解題的時候,我們都可以通過所畫出的函式影象來解答題目,這種方法的好處就是簡單快捷,所以我們在學習函式的時候一定也要學習如何畫出函式的影象。

  一般來說二次函式基本形式的頂點座標都是在原點,也就是***0,0***處,而完整形式的二次函式我們就可以通過常數項c來判斷。除了頂點座標,開口方向之外,二次函式影象還有一個很重要的地方就是對稱軸,因為二次函式是一個對稱影象,所以對稱軸的存在就十分重要。因此,當我們學習二次函式的時候一定要注意這三個方面的學習,就是開口方向、頂點座標以及對稱軸。