平方差公式記憶口訣

  學習數學有沒有巧門?有!有的人記性好,能把書本上的典型題原原本本的背下來,這種學習方法叫死記硬背,這類人靠一般知識和概念題得分;有的人記性不好,靠推導和分析難題得分,小題、簡單問題丟分,常給人一種得不償失的感覺。怎樣才能魚與熊掌兼得呢?小編告訴你記憶的竅門。

  

  有理數的加法運算

  同號兩數來相加,絕對值加不變號。

  異號相加大減小,大數決定和符號。

  互為相反數求和,結果是零須記好。

  【注】“大”減“小”是指絕對值的大小。

  有理數的減法運算

  減正等於加負,減負等於加正。

  有理數的乘法運算子號法則

  同號得正異號負,一項為零積是零。

  合併同類項

  說起合併同類項,法則千萬不能忘。

  只求係數代數和,字母指數留原樣。

  去、添括號法則

  去括號或添括號,關鍵要看連線號。

  擴號前面是正號,去添括號不變號。

  括號前面是負號,去添括號都變號。

  解方程

  已知未知鬧分離,分離要靠移完成。

  移加變減減變加,移乘變除除變乘。

  平方差公式

  兩數和乘兩數差,等於兩數平方差。

  積化和差變兩項,完全平方不是它。

  完全平方公式

  二數和或差平方,展開式它共三項。

  首平方與末平方,首末二倍中間放。

  和的平方加聯結,先減後加差平方。

  完全平方公式

  首平方又末平方,二倍首末在中央。

  和的平方加再加,先減後加差平方。

  解一元一次方程

  先去分母再括號,移項變號要記牢。

  同類各項去合併,係數化“1”還沒好。

  求得未知須檢驗,回代值等才算了。

  解一元一次方程

  先去分母再括號,移項合併同類項。

  係數化1還沒好,準確無誤不白忙。

  因式分解與乘法

  和差化積是乘法,乘法本身是運算。

  積化和差是分解,因式分解非運算。

  因式分解

  兩式平方符號異,因式分解你別怕。

  兩底和乘兩底差,分解結果就是它。

  兩式平方符號同,底積2倍坐中央。

  因式分解能與否,符號上面有文章。

  同和異差先平方,還要加上正負號。

  同正則正負就負,異則需添冪符號。

  因式分解

  一提二套三分組,十字相乘也上數。

  四種方法都不行,拆項添項去重組。

  重組無望試求根,換元或者算餘數。

  多種方法靈活選,連乘結果是基礎。

  同式相乘若出現,乘方表示要記住。

  【注】一提提公因式二套套公式

  因式分解

  一提二套三分組,叉乘求根也上數。

  五種方法都不行,拆項添項去重組。

  對症下藥穩又準,連乘結果是基礎。

  二次三項式的因式分解

  先想完全平方式,十字相乘是其次。

  兩種方法行不通,求根分解去嘗試。

  比和比例

  兩數相除也叫比,兩比相等叫比例。

  外項積等內項積,等積可化八比例。

  分別交換內外項,統統都要叫更比。

  同時交換內外項,便要稱其為反比。

  前後項和比後項,比值不變叫合比。

  前後項差比後項,組成比例是分比。

  兩項和比兩項差,比值相等合分比。

  前項和比後項和,比值不變叫等比。

  解比例

  外項積等內項積,列出方程並解之。

  求比值

  由已知去求比值,多種途徑可利用。

  活用比例七性質,變數替換也走紅。

  消元也是好辦法,殊途同歸會變通。

  正比例與反比例

  商定變數成正比,積定變數成反比。

  正比例與反比例

  變化過程商一定,兩個變數成正比。

  變化過程積一定,兩個變數成反比。

  判斷四數成比例

  四數是否成比例,遞增遞減先排序。

  兩端積等中間積,四數一定成比例。

  判斷四式成比例

  四式是否成比例,生或降冪先排序。

  兩端積等中間積,四式便可成比例。

  比例中項

  成比例的四項中,外項相同會遇到。

  有時內項會相同,比例中項少不了。

  比例中項很重要,多種場合會碰到。

  成比例的四項中,外項相同有不少。

  有時內項會相同,比例中項出現了。

  同數平方等異積,比例中項無處逃。

  根式與無理式

  表示方根代數式,都可稱其為根式。

  根式異於無理式,被開方式無限制。

  被開方式有字母,才能稱為無理式。

  無理式都是根式,區分它們有標誌。

  被開方式有字母,又可稱為無理式。

  求定義域

  求定義域有講究,四項原則須留意。

  負數不能開平方,分母為零無意義。

  指是分數底正數,數零沒有零次冪。

  限制條件不唯一,滿足多個不等式。

  求定義域要過關,四項原則須注意。

  負數不能開平方,分母為零無意義。

  分數指數底正數,數零沒有零次冪。

  限制條件不唯一,不等式組求解集。

  解一元一次不等式

  先去分母再括號,移項合併同類項。

  係數化“1”有講究,同乘除負要變向。

  先去分母再括號,移項別忘要變號。

  同類各項去合併,係數化“1”注意了。

  同乘除正無防礙,同乘除負也變號。

  解一元一次不等式組

  大於頭來小於尾,大小不一中間找。

  大大小小沒有解,四種情況全來了。

  同向取兩邊,異向取中間。

  中間無元素,無解便出現。

  幼兒園小鬼當家,同小相對取較小

  敬老院以老為榮,同大就要取較大

  軍營裡沒老沒少。大小小大就是它

  大大小小解集空。小小大大哪有哇

  解一元二次不等式

  首先化成一般式,建構函式第二站。

  判別式值若非負,曲線橫軸有交點。

  A正開口它向上,大於零則取兩邊。

  代數式若小於零,解集交點數之間。

  方程若無實數根,口上大零解為全。

  小於零將沒有解,開口向下正相反。

  用平方差公式因式分解

  異號兩個平方項,因式分解有辦法。

  兩底和乘兩底差,分解結果就是它。

  初中數學公式記憶口訣

  一元一次方程

  已知未知要分離,分離方法就是移,

  加減移項要變號,乘除移了要顛倒。

  恆等變換

  兩個數字來相減,互換位置最常見,

  正負只看其指數,奇數變號偶不變。

  a-b2n+1=-b-a2n+1

  a-b2n=b-a2n

  平方差公式

  平方差公式有兩項,符號相反切記牢,

  首加尾乘首減尾,莫與完全公式相混淆。

  a+ba-b=a2-b2

  完全平方

  完全平方有三項,首尾符號是同鄉,

  首平方、尾平方,首尾二倍放中央;

  首±尾括號帶平方,尾項符號隨中央。

  因式分解

  一提公因式二套公式三分組,

  細看幾項不離譜,兩項只用平方差,

  三項十字相乘法,陣法熟練不馬虎,

  四項仔細看清楚,若有三個平方數項,

  就用一三來分組,否則二二去分組,

  五項、六項更多項,二三、三三試分組,

  以上若都行不通,拆項、添項看清楚。

  “代入”口決

  挖去字母換上數式,數字、字母都保留;

  換上分數或負數,給它帶上小括弧,

  原括弧內出現括弧,逐級向下變括弧小—中—大

  有理數的加法運算

  同號相加一邊倒;異號相加“大”減“小”,

  符號跟著大的跑;絕對值相等“零”正好。

  【注】“大”減“小”是指絕對值的大小。

  合併同類項

  合併同類項,法則不能忘,

  只求係數和,字母、指數不變樣。

  去、添括號法則

  去括號、添括號,關鍵看符號,

  括號前面是正號,去、添括號不變號,

  括號前面是負號,去、添括號都變號。

  單項式運算

  加、減、乘、除、乘開方,三級運算分得清,

  係數進行同級運算,指數運算降級進行。

  一元一次不等式解題的一般步驟

  去分母、去括號,移項時候要變號,

  同類項、合併好,再把係數來除掉,

  兩邊除以負數時,不等號改向別忘了。

  一元一次不等式組的解集

  大大取較大,小小取較小,

  小大,大小取中間,

  大小,小大無處找。

  一元二次不等式、一元一次絕對值不等式的解集

  大魚於吃取兩邊,小魚於吃取中間。