感測器工作流程圖
感測器是一種能把物理量或化學量轉變成便於利用的電訊號的器件,通常由敏感元件和轉換元件組成。以下是小編為大家整理的關於,給大家作為參考,歡迎閱讀!
幾種感測器的工作原理
一、進氣壓力感測器
進氣壓力感測器***ManifoldAbsolutePressureSensor***,簡稱MAP。它以真空管連線進氣歧管,隨著引擎不同的轉速負荷,感應進氣歧管內的真空變化,再從感知器內部電阻的改變,轉換成電壓訊號,供ECU電腦修正噴油量和點火正時角度。換言之,ECU電腦輸出5V電壓給進氣壓力感知器,再由訊號端偵測電壓值,電腦,當引擎在怠速時,其電壓訊號約1-1.5V,節氣門全開時,則約有4.5V電壓訊號。
原理:進氣壓力感測器檢測的是節氣門後方的進氣歧管的絕對壓力,它根據發動機轉速和負荷的大小檢測出歧管內絕對壓力的變化,然後轉換成訊號電壓送至發動機控制單元***ECU***,ECU依據此訊號電壓的大小,控制基本噴油量的大小。
二、曲軸位置感測器
曲軸位置感測器的作用就是確定曲軸的位置,也就是曲軸的轉角。它通常要配合凸輪軸位置感測器一起來工作——確定基本點火時刻。我們都知道,發動機是在壓縮衝程末開始點火的,那麼發動機電腦是怎麼知道哪缸該點火了呢?就是通過曲軸位置感測器和凸輪軸位置感測器的訊號來計算的,通過曲軸位置感測器,可以知道哪缸活塞處於上止點,通過凸輪軸位置感測器,可以知道哪缸活塞是在壓縮衝程中。這樣,發動機電腦知道了該什麼時候給哪缸點火了。
原理:曲軸位置感測器通常安裝在分電器內,是控制系統中最重要的感測器之一。其作用有:檢測發動機轉速,因此又稱為轉速感測器;檢測活塞上止點位置,故也稱為上止點感測器,包括檢測用於控制點火的各缸上止點訊號、用於控制順序噴油的第一缸上止點訊號。
曲軸感測器主要有三種類型:磁電感應式、霍爾效應式和光電式。
1、磁電感應式:
磁電感應式轉速感測器和曲軸位置感測器分上、下兩層安裝在分電器內。感測器由永磁感應檢測線圈和轉子***正時轉子和轉速轉子***組成,轉子隨分電器軸一起旋轉。正時轉子有一、二或四個齒等多種形式,轉速轉子為 24個齒。永磁感應檢測線圈固定在分電器體上。若已知轉速感測器訊號和曲軸位置感測器訊號,以及各缸的工作順序,就可知道各缸的曲軸位置。磁電感應式轉速感測器和曲軸位置感測器的轉子訊號盤也可安裝在曲軸或凸輪軸上。
2、 霍爾效應式:
霍爾效應式轉速感測器和曲軸位置感測器是一種利用霍爾效應的訊號發生器。霍爾訊號發生器安裝在分電器內,與分火頭同軸,由封裝的霍爾晶片和永久磁鐵作成整體固定在分電器盤上。觸發葉輪上的缺口數和發動機氣缸數相同。當觸發葉輪上的葉片進入永久磁鐵與霍爾元件之間,霍爾觸發器的磁場被葉片旁路,這時不產生霍爾電壓,感測器無輸出訊號;當觸發葉輪上的缺口部分進入永久磁鐵和霍爾元件之間時,磁力線進入霍爾元件,霍爾電壓升高,感測器輸出電壓訊號。
3、光電式:
光電式曲軸位置感測器一般裝在分電器內,由訊號發生器和帶光孔的訊號盤組成。其訊號盤與分電器軸一起轉動,訊號盤外圈有 360條光刻縫隙,產生曲軸轉角 1 °的訊號;稍靠內有間隔 60 °均布的 6 個光孔,產生曲軸轉角 120 °的訊號,其中 1 個光孔較寬,用以產生相對於 1 缸上止點的訊號。訊號發生器安裝在分電器殼體上,由二隻發光二極體、二隻光敏二極體和電路組成。發光二極體正對著光敏二極體。訊號盤位於發光二極體和光敏二極體之間,由於訊號盤上有光孔,則產生透光和遮光交替變化現象。當發光二極體的光束照到光敏二極體時,光敏二極體產生電壓;當發光二極體光束被檔住時,光敏二極體電壓為0 。這些電壓訊號經電路部分整形放大後,即向電子控制單元輸送曲軸轉角為 1 °和 120°時的訊號,電子控制單元根據這些訊號計算髮動機轉速和曲軸位置。
三、凸輪軸位置感測器
也叫同步訊號感測器,它是一個氣缸判別定位裝置,向ECU輸入凸輪軸位置訊號,是點火控制的主控訊號。有曲軸位置感測器和凸輪軸位置感測器兩類。
原理:凸輪軸位置感測器的功用是採集配氣凸輪軸的位置訊號,並輸入ECU,以便ECU識別氣缸1壓縮上止點,從而進行順序噴油控制、點火時刻控制和爆燃控制。此外,凸輪軸位置訊號還用於發動機起動時識別出第一次點火時刻。因為凸輪軸位置感測器能夠識別哪一個氣缸活塞即將到達上止點,所以稱為氣缸識別感測器。
四、節氣門感測器
節氣門位置感測器又稱為節氣門開度感測器或節氣門開關,是用於檢測發動機狀態的裝置。
原理:節氣門開關有兩副觸點,分別為怠速觸點***IDL***和全負荷觸點***PSW***。由一個和節氣門同軸的凸輪控制兩開關觸點的開啟和閉合。當節氣門處於全關閉的位置時,怠速觸點IDL閉合,ECU根據怠速開關的閉合訊號判定發動機處於怠速工況,從而按怠速工況的要求控制噴油量;當節氣門開啟時,怠速觸點開啟,ECU根據這一訊號進行從怠速到小負荷的過渡工況的噴油控制;全負荷觸點在節氣門由全閉位置到中小開度範圍內一直處於開啟狀態,當節氣門開啟至一定角度***豐田1G-EU車為55°***的位置時,全負荷觸點開始閉合,向ECU送出發動機處於全負荷運轉工況的訊號,ECU根據此訊號進行全負荷加濃控制。
五、氧感測器
在使用三元催化轉換器以減少排氣汙染的發動機上,氧感測器是必不可少的元件。由於混合氣的空燃比一旦偏離理論空燃比,三元催化劑對CO、HC和NOx的淨化能力將急劇下降,故在排氣管中安裝氧感測器,用以檢測排氣中氧的濃度,並向ECU發出反饋訊號,再由ECU控制噴油器噴油量的增減,從而將混合氣的空燃比控制在理論值附近。
原理:氧感測器是汽車上的標準配置,它是利用陶瓷敏感元件測量汽車排氣管道中的氧電勢,由化學平衡原理計算出對應的氧濃度,達到監測和控制燃燒空燃比,以保證產品質量及尾氣排放達標的測量元件。氧感測器廣泛應用於各類煤燃燒、油燃燒、氣燃燒等爐體的氣氛控制,它是目前最佳的燃燒氣氛測量方式,具有結構簡單、響應迅速、維護容易、使用方便、測量準確等優點。運用該感測器進行燃燒氣氛測量和控制既能穩定和提高產品質量,又可縮短生產週期,節約能源。
汽車上的氧感測器工作原理與乾電池相似,感測器中的氧化鋯元素起類似電解液的作用。其基本工作原理是:在一定條件下,利用氧化鋯內外兩側的氧濃度差,產生電位差,且濃度差越大,電位差越大。大氣中氧的含量為21%,濃混合氣燃燒後的廢氣實際上不含氧,稀混合氣燃燒後生成的廢氣或因缺火產生的廢氣中含有較多的氧,但仍比大氣中的氧少得多。 在高溫及鉑的催化下,帶負電的氧離子吸附在氧化鋯套管的內外表面上。由於大氣中的氧氣比廢氣中的氧氣多,套管上與大氣相通一側比廢氣一側吸附更多的負離子,兩側離子的濃度差產生電動勢。
當汽車套管廢氣一側的氧濃度低時,在氧感測器電極之間產生一個高電壓***0.6~1V***,這個電壓訊號被送到汽車ECU放大處理,ECU把高電壓訊號看作濃混合氣,而把低電壓訊號看作稀混合氣。根據氧感測器的電壓訊號,電腦按照儘可能接近14.7:1的理論最佳空燃比來稀釋或加濃混合氣。因此氧感測器是電子控制燃油計量的關鍵感測器。氧感測器只有在高溫時***端部達到300°C以上***其特性才能充分體現,才能輸出電壓。它在約800°C時,對混合氣的變化反應最快,而在低溫時這種特性會發生很大變化。
六、爆震感測器
爆震感測器安裝在發動機缸體中間以四缸機為例安裝在2缸和3缸之間,或者1、2缸中間一個,3、4缸中間一個。其作用是用來測定發動機抖動度,當發動機產生爆震時用來調整點火提前角。
原理:爆震感測器是交流訊號發生器,但它們與其他大多數汽車交流訊號發生器大不相同,除了像磁電式曲軸和凸輪軸位置感測器一樣探測轉軸的速度和位置,它們也探測振動或機械壓力。與定子和磁阻器不同,它們通常是壓電裝置。它們能感知機械壓力或振動***例如發動機起爆震時能產生交流電壓***的特殊材料構成。
點火過早,排氣再迴圈不良,低標號燃油等原因引起的發動機爆震會造成發動機損壞。爆震感測器向電腦***有的通過控制模組PCM***提供爆震訊號,使得電腦能重新調整點火正時以阻止進一步爆震。它們實際上是充當點火正時反饋控制迴圈的“氧感測器”角色。
爆震感測器安放在發動機體或汽缸的不同位置。當振動或敲缸發生時,它產生一個小電壓峰值,敲缸或振動越大。爆震感測器產主峰值就越大。一定高的頻率表明是爆震或敲缸,爆震感測器通常設計成測量5至15千赫範圍的頻率。當控制單元接收到這些頻率時,電腦重修正點火正時,以阻止繼續爆震,爆震感測器通常十分耐用。所以感測器只會因本身失效而損壞。
發動機爆震時產生壓力波,其頻率為1-10KHZ.壓力波傳給缸體,使其金屬質點產生振動加速度.加速度計爆震感測器就是通過測量缸體表面的震動加速度來檢測爆震壓力的強弱.點火時間過早是產生爆震的一個主要原因。由於要求發動機能發出最大功率,為了不損失發動機功率而有不產生爆震,安裝爆震感測器,使電子控制裝置自動調節點火時間。