高中數學關於充要條件的概念

  高二數學中學到的充要條件是證明題的一種常考型別,下面的小編將為大家帶來的介紹,希望能夠幫助到大家。

  介紹

  ***1***先看“充分條件和必要條件”

  當命題“若p則q”為真時,可表示為p => q,則我們稱p為q的充分條件,q是p的必要條件。這裡由p => q,得出p為q的充分條件是容易理解的。

  但為什麼說q是p的必要條件呢?

  事實上,與“p => q”等價的逆否命題是“非q => 非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對於p是必不可少的,因而是必要的。

  ***2***再看“充要條件”

  若有p =>q,同時q => p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q

  回憶一下初中學過的“等價於”這一概念;如果從命題A成立可以推出命題B成立,反過來,從命題B成立也可以推出命題A成立,那麼稱A等價於B,記作A<=>B。“充要條件”的含義,實際上與“等價於”的含義完全相同。也就是說,如果命題A等價於命題B,那麼我們說命題A成立的充要條件是命題B成立;同時有命題B成立的充要條件是命題A成立。

  ***3***定義與充要條件

  數學中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。

  顯然,一個定理如果有逆定理,那麼定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。

  “充要條件”有時還可以改用“當且僅當”來表示,其中“當”表示“充分”。“僅當”表示“必要”。

  ***4***一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質定理中的“結論”都可作為必要條件。

  高中數學數列的概念知識點

  1.數列的定義

  按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.

  ***1***從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那麼它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.

  ***2***在數列的定義中並沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….

  ***4***數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函式值,也就是相當於f***n***,而項數是指這個數在數列中的位置序號,它是自變數的值,相當於f***n***中的n.

  ***5***次序對於數列來講是十分重要的,有幾個相同的數,由於它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

  2.數列的分類

  ***1***根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對於有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.

  ***2***按照項與項之間的大小關係或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.

  3.數列的通項公式

  數列是按一定次序排列的一列數,其內涵的本質屬性是確定這一列數的規律,這個規律通常是用式子f***n***來表示的,

  這兩個通項公式形式上雖然不同,但表示同一個數列,正像每個函式關係不都能用解析式表達出來一樣,也不是每個數列都能寫出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是唯一的,僅僅知道一個數列前面的有限項,無其他說明,數列是不能確定的,通項公式更非唯一.如:數列1,2,3,4,…,

  由公式寫出的後續項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規律,多觀察分析,真正找到數列的內在規律,由數列前幾項寫出其通項公式,沒有通用的方法可循.

  再強調對於數列通項公式的理解注意以下幾點:

  ***1***數列的通項公式實際上是一個以正整數集N*或它的有限子集{1,2,…,n}為定義域的函式的表示式.

  ***2***如果知道了數列的通項公式,那麼依次用1,2,3,…去替代公式中的n就可以求出這個數列的各項;同時,用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話,是第幾項.

  ***3***如所有的函式關係不一定都有解析式一樣,並不是所有的數列都有通項公式.

  如2的不足近似值,精確到1,0.1,0.01,0.001,0.000 1,…所構成的數列1,1.4,1.41,1.414,1.414 2,…就沒有通項公式.

  ***4***有的數列的通項公式,形式上不一定是唯一的,正如舉例中的:

  ***5***有些數列,只給出它的前幾項,並沒有給出它的構成規律,那麼僅由前面幾項歸納出的數列通項公式並不唯一.

  4.數列的圖象

  對於數列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應關係:

  序號:1 2 3 4 5 6 7

  項: 4 5 6 7 8 9 10

  這就是說,上面可以看成是一個序號集合到另一個數的集合的對映.因此,從對映、函式的觀點看,數列可以看作是一個定義域為正整集N****或它的有限子集{1,2,3,…,n}***的函式,當自變數從小到大依次取值時,對應的一列函式值.這裡的函式是一種特殊的函式,它的自變數只能取正整數.

  由於數列的項是函式值,序號是自變數,數列的通項公式也就是相應函式和解析式.

  數列是一種特殊的函式,數列是可以用圖象直觀地表示的.

  數列用圖象來表示,可以以序號為橫座標,相應的項為縱座標,描點畫圖來表示一個數列,在畫圖時,為方便起見,在平面直角座標系兩條座標軸上取的單位長度可以不同,從數列的圖象表示可以直觀地看出數列的變化情況,但不精確.

  把數列與函式比較,數列是特殊的函式,特殊在定義域是正整數集或由以1為首的有限連續正整陣列成的集合,其圖象是無限個或有限個孤立的點.

  5.遞推數列

  一堆鋼管,共堆放了七層,自上而下各層的鋼管數構成一個數列:4,5,6,7,8,9,10.①

  數列①還可以用如下方法給出:自上而下第一層的鋼管數是4,以下每一層的鋼管數都比上層的鋼管數多1,