初二數學知識點複習整理

  科學家愛迪生曾說過:“天才就是1%的靈感加上99%的汗水,但那1%的靈感是最重要的,甚至比那99%的汗水都要重要。”即使我們的成績不是很好,但只要有心想要學習,那麼我們就應該笨鳥先飛。接下來是小編為大家整理的,希望大家喜歡!

  一i

  相似三角形定理

  1.相似三角形定義:

  對應角相等,對應邊成比例的三角形,叫做相似三角形。

  2.相似三角形的表示方法:用符號"∽"表示,讀作"相似於"。

  3.相似三角形的相似比:

  相似三角形的對應邊的比叫做相似比。

  4.相似三角形的預備定理:

  平行於三角形一邊的直線和其他兩邊***或兩邊的延長線***相交,所截成的三角形與原三角形相似。

  從表中可以看出只要將全等三角形判定定理中的"對應邊相等"的條件改為"對應邊

  成比例"就可得到相似三角形的判定定理,這就是我們數學中的用類比的方法,在舊知識的基礎上找出新知識並從中探究新知識掌握的方法。

  6.直角三角形相似:

  ***1***直角三角形被斜邊上的高分成兩個直角三角形和原三角形相似。

  ***2***如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似。

  7.相似三角形的性質定理:

  ***1***相似三角形的對應角相等。

  ***2***相似三角形的對應邊成比例。

  ***3***相似三角形的對應高線的比,對應中線的比和對應角平分線的比都等於相似比。

  ***4***相似三角形的周長比等於相似比。

  ***5***相似三角形的面積比等於相似比的平方。

  8. 相似三角形的傳遞性

  如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那麼△ABC∽A2B2C2

  

  四邊形

  平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。

  平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。

  平行四邊形的判定

  1.兩組對邊分別相等的四邊形是平行四邊形

  2.對角線互相平分的四邊形是平行四邊形;

  3.兩組對角分別相等的四邊形是平行四邊形;

  4.一組對邊平行且相等的四邊形是平行四邊形。

  三角形的中位線平行於三角形的第三邊,且等於第三邊的一半。

  直角三角形斜邊上的中線等於斜邊的一半。

  矩形的定義:有一個角是直角的平行四邊形。

  矩形的性質:矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD

  矩形判定定理:

  1.有一個角是直角的平行四邊形叫做矩形。

  2.對角線相等的平行四邊形是矩形。

  3.有三個角是直角的四邊形是矩形。

  菱形的定義:鄰邊相等的平行四邊形。

  菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。

  菱形的判定定理:

  1.一組鄰邊相等的平行四邊形是菱形。

  2.對角線互相垂直的平行四邊形是菱形。

  3.四條邊相等的四邊形是菱形。S菱形=1/2×ab***a、b為兩條對角線***

  正方形定義:一個角是直角的菱形或鄰邊相等的矩形。

  正方形的性質:四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。

  正方形判定定理:

  1.鄰邊相等的矩形是正方形。

  2.有一個角是直角的菱形是正方形。

  梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。

  直角梯形的定義:有一個角是直角的梯形

  等腰梯形的定義:兩腰相等的梯形。

  等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。

  等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。

  解梯形問題常用的輔助線:如圖

  線段的重心就是線段的中點。平行四邊形的重心是它的兩條對角線的交點。三角形的三條中線交於疑點,這一點就是三角形的重心。寬和長的比是-1***約為0.618***的矩形叫做黃金矩形。

  

  四邊形的相關概念

  1、四邊形

  在同一平面內,由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。

  2、四邊形具有不穩定性

  3、四邊形的內角和定理及外角和定理

  四邊形的內角和定理:四邊形的內角和等於360°。

  四邊形的外角和定理:四邊形的外角和等於360°。

  推論:多邊形的內角和定理:n邊形的內角和等於***n?2***?180°;

  多邊形的外角和定理:任意多邊形的外角和等於360°。

  6、設多邊形的邊數為n,則多邊形的對角線共有n***n?3***條。從n邊形的一個頂點出2

  發能引***n-3***條對角線,將n邊形分成***n-2***個三角形。

  

  第一章 一元一次不等式和一元一次不等式組

  一、一般地,用符號***或***,***或***連線的式子叫做不等式.

  能使不等式成立的未知數的值,叫做不等式的解. 不等式的解不,把所有滿足不等式的解集合在一起,構成不等式的解集. 求不等式解集的過程叫解不等式.

  由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組

  不等式組的解集 :一元一次不等式組各個不等式的解集的公共部分.

  等式基本性質1:在等式的兩邊都加上***或減去***同一個數或整式,所得的結果仍是等式. 基本性質2:在等式的兩邊都乘以或除以同一個數***除數不為0***,所得的結果仍是等式.

  二、不等式的基本性質1:不等式的兩邊都加上***或減去***同一個整式,不等號的方向不變. ***注:移項要變號,但不等號不變.***性質2:不等式的兩邊都乘以***或除以***同一個正數,不等號的方向不變.性質3:不等式的兩邊都乘以***或除以***同一個負數,不等號的方向改變.不等式的基本性質1、 若ab, 則a+cb+c;2、若ab, c0 則acbc若c0, 則ac不等式的其他性質:反射性:若ab,則bb,且bc,則ac

  三、解不等式的步驟:1、去分母; 2、去括號; 3、移項合併同類項; 4、係數化為1. 四、解不等式組的步驟:1、解出不等式的解集2、在同一數軸表示不等式的解集. 五、列一元一次不等式組解實際問題的一般步驟:***1*** 審題;***2***設未知數,找***不等量***關係式;***3***設元,***根據不等量***關係式列不等式***組******4***解不等式組;檢驗並作答.

  六、常考題型: 1、 求4x-6 7x-12的非負數解. 2、已知3***x-a***=x-a+1r的解適合2***x-5*** 8a,求a 的範圍.

  3、當m取何值時,3x+m-2***m+2***=3m+x的解在-5和5之間.

  第二章 分解因式

  一、公式:1、 ma+mb+mc=m***a+b+c***2、a2-b2=***a+b******a-b***3、a22ab+b2=***ab***2 二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式. 1、把幾個整式的積化成一個多項式的形式,是乘法運算.2、把一個多項式化成幾個整式的積的形式,是因式分解.3、ma+mb+mc m***a+b+c***4、因式分解與整式乘法是相反方向的變形.

  三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式. 找公因式的一般步驟:***1***若各項係數是整係數,取係數的公約數;***2***取相同的字母,字母的指數取較低的;***3***取相同的多項式,多項式的指數取較低的.***4***所有這些因式的乘積即為公因式.

  四、分解因式的一般步驟為:***1***若有-先提取-,若多項式各項有公因式,則再提取公因式.***2***若多項式各項沒有公因式,則根據多項式特點,選用平方差公式或完全平方公式.***3***每一個多項式都要分解到不能再分解為止.

  五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式. 分解因式的方法:1、提公因式法.2、運用公式法.

  第三章 分式

  注:1對於任意一個分式,分母都不能為零.

  2分式與整式不同的是:分式的分母中含有字母,整式的分母中不含字母.

  3分式的值為零含兩層意思:分母不等於零;分子等於零.*** 中B0時,分式有意義;分式 中,當B=0分式無意義;當A=0且B0時,分式的值為零.***

  常考知識點:1、分式的意義,分式的化簡.2、分式的加減乘除運算.3、分式方程的解法及其利用分式方程解應用題.

  第四章 相似圖形

  一、 定義 表示兩個比相等的式子叫比例.如果a與b的比值和c與d的比值相等,那麼 或a∶b=c∶d,這時組成比例的四個數a,b,c,d叫做比例的項,兩端的兩項叫做外項,中間的兩項叫做內項.即a、d為外項,c、b為內項. 如果選用同一個長度單位量得兩條線段AB、CD的長度分別是m、n,那麼就說這兩條線段的比***ratio***AB∶CD=m∶n,或寫成 = ,其中,線段AB、CD分別叫做這兩個線段比的前項和後項.如果把 表示成比值k,則 =k或AB=kCD. 四條線段a,b,c,d中,如果a與b的比等於c與d的比,即 ,那麼這四條線段a,b,c,d叫做成比例線段,簡稱比例線段. 黃金分割的定義:線上段AB上,點C把線段AB分成兩條線段AC和BC,如果 ,那麼稱線段AB被點C黃金分割***golden section***,點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.其中 0.618. 引理:平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例. 相似多邊形: 對應角相等,對應邊成比例的兩個多邊形叫做相似多邊形. 相似多邊形:各角對應相等、各邊對應成比例的兩個多邊形叫做相似多邊形. 相似比:相似多邊形對應邊的比叫做相似比.

  二、比例的基本性質:1、若ad=bc***a,b,c,d都不等於0***,那麼 .如果***b,d都不為0***,那麼ad=bc.2、合比性質:如果 ,那麼 .3、等比性質:如果 == ***b+d++n0***,那麼 .4、更比性質:若 那麼 .5、反比性質:若 那麼

  三、求兩條線段的比時要注意的問題:***1***兩條線段的長度必須用同一長度單位表示,如果單位長度不同,應先化成同一單位,再求它們的比;***2***兩條線段的比,沒有長度單位,它與所採用的長度單位無關;***3***兩條線段的長度都是正數,所以兩條線段的比值總是正數.

  四、相似三角形***多邊形***的性質:相似三角形對應角相等,對應邊成比例,相似三角形對應高的比、對應角平分線的比和對應中線的比都等於相似比.相似多邊形的周長比等於相似比,面積比等於相似比的平方.

  五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL

  六、相似三角形的判定方法,判斷方法有:1.三邊對應成比例的兩個三角形相似;2.兩角對應相等的兩個三角形相似;3.兩邊對應成比例且夾角相等;4.定義法: 對應角相等,對應邊成比例的兩個三角形相似.5、定理:平行於三角形一邊的直線和其他兩邊***或兩邊的延長線***相交,所構成的三角形與原三角形相似. 在特殊的三角形中,有的相似,有的不相似.1、兩個全等三角形一定相似.2、兩個等腰直角三角形一定相似.3、兩個等邊三角形一定相似.4、兩個直角三角形和兩個等腰三角形不一定相似.

  七、位似圖形上任意一對對應點到位似中心的距離之比等於位似比. 如果兩個圖形不僅是相似圖形,而且每組對應點所在的直線都經過同一個點,那麼這樣的兩個圖形叫做位似圖形,這個點叫位似中心,這時的相似比又稱為位似比.

  八、常考知識點:1、比例的基本性質,黃金分割比,位似圖形的性質.2、相似三角形的性質及判定.相似多邊形的性質.

  第五章 資料的收集與處理

  ***1***普查的定義:這種為了一定目的而對考察物件進行的全面調查,稱為普查.***2***總體:其中所要考察物件的全體稱為總體.***3***個體:組成總體的每個考察物件稱為個體***4***抽樣調查:***sampling investigation***:從總體中抽取部分個體進行調查,這種調查稱為抽樣調查.***5***樣本***sample***:其中從總體中抽取的一部分個體叫做總體的一個樣本.***6*** 當總體中的個體數目較多時,為了節省時間、人力、物力,可採用抽樣調查.為了獲得較為準確的調查結果,抽樣時要注意樣本的代表性和廣泛性.還要注意關注樣本的大小. ***7***我們稱每個物件出現的次數為頻數.而每個物件出現的次數與總次數的比值為頻率.

  資料波動的統計量:極差:指一組資料中資料與最小資料的差.方差:是各個資料與平均數之差的平方的平均數.標準差:方差的算術平方根.識記其計算公式.一組資料的極差,方差或標準差越小,這組資料就越穩定.還要知平均數,眾數,中位數的定義.

  刻畫平均水平用:平均數,眾數,中位數. 刻畫離散程度用:極差,方差,標準差.

  常考知識點:1、作頻數分佈表,作頻數分佈直方圖.2、利用方差比較資料的穩定性.3、平均數,中位數,眾數,極差,方差,標準差的求法.3、頻率,樣本的定義

  第六章 證明

  一、對事情作出判斷的句子,就叫做命題. 即:命題是判斷一件事情的句子.一般情況下:疑問句不是命題.圖形的作法不是命題. 每個命題都有條件***condition***和結論***conclusion***兩部分組成. 條件是已知的事項,結論是由已知事項推斷出的事項. 一般地,命題都可以寫成如果,那麼的形式.其中如果引出的部分是條件,那麼引出的部分是結論. 要說明一個命題是一個假命題,通常可以舉出一個例子,使它具備命題的條件,而不具有命題的結論.這種例子稱為反例.

  二、三角形內角和定理:三角形三個內角的和等於180度.1、證明三角形內角和定理的思路是將原三角形中的三個角湊到一起組成一個平角.一般需要作輔助線.既可以作平行線,也可以作一個角等於三角形中的一個角.2、三角形的外角與它相鄰的內角是互為補角.

  三、三角形的外角與它不相鄰的內角關係是:***1***三角形的一個外角等於和它不相鄰的兩個內角的和.***2***三角形的一個外角大於任何一個和它不相鄰的內角.

  四、證明一個命題是真命題的基本步驟是:***1***根據題意,畫出圖形.***2***根據條件、結論,結合圖形,寫出已知、求證.***3***經過分析,找出由已知推出求證的途徑,寫出證明過程. 在證明時需注意:***1***在一般情況下,分析的過程不要求寫出來.***2***證明中的每一步推理都要有根據. 如果兩條直線都和第三條直線平行,那麼這兩條直線也相互平行.30.所對的直角邊是斜邊的一半.斜邊上的高是斜邊的一半.