初二數學知識點手抄報圖片

  數學知識滲透著一些科學的理論,學習數學的基本知識要點是非常重要的。下面是由小編分享的初二數學手抄報效果圖,希望對你有用。

  簡單的初二數學手抄報圖片欣賞

  數學手抄報資料:函式小史

  數學史表明,重要的數學概念的產生和發展,對數學發展起著不可估量的作用.有些重要的數學概念對數學分支的產生起著奠定性的作用.我們剛學過的函式就是這樣的重要概念.在笛卡爾引入變數以後,變數和函式等概念日益滲透到科學技術的各個領域.縱覽宇宙,運算天體,探索熱的傳導,揭示電磁祕密,這些都和函式概念息息相關.正是在這些實踐過程中,人們對函式的概念不斷深化.

  他又用函式表示在直角座標系中曲線上一點的橫座標、縱座標.1718年,萊布尼茨的學生、瑞士數學家貝努利把函式定義為:“由某個變數及任意的一個常數結合而成的數量.”意思是凡變數x和常量構成的式子都叫做x的函式.貝努利所強調的是函式要用公式來表示.

  後來數學家覺得不應該把函式概念侷限在只能用公式來表達上.只要一些變數變化,另一些變數能隨之而變化就可以,至於這兩個變數的關係是否要用公式來表示,就不作為判別函式的標準.

  1755年,瑞士數學家尤拉把函式定義為:“如果某些變數,以某一種方式依賴於另一些變數,即當後面這些變數變化時,前面這些變數也隨著變化,我們把前面的變數稱為後面變數的函式.”在尤拉的定義中,就不強調函式要用公式表示了.由於函式不一定要用公式來表示,尤拉曾把畫在座標系的曲線也叫函式.他認為:“函式是隨意畫出的一條曲線.”

  當時有些數學家對於不用公式來表示函式感到很不習慣,有的數學家甚至抱懷疑態度.他們把能用公式表示的函式叫“真函式”,把不能用公式表示的函式叫“假函式”.1821年,法國數學家柯西給出了類似現在中學課本的函式定義:“在某些變數間存在著一定的關係,當一經給定其中某一變數的值,其他變數的值可隨著而確定時,則將最初的變數叫自變數,其他各變數叫做函式.”在柯西的定義中,首先出現了自變數一詞.

  1834年,俄國數學家羅巴契夫斯基進一步提出函式的定義:“x的函式是這樣的一個數,它對於每一個x都有確定的值,並且隨著x一起變化.函式值可以由解析式給出,也可以由一個條件給出,這個條件提供了一種尋求全部對應值的方法.函式的這種依賴關係可以存在,但仍然是未知的.”這個定義指出了對應關係***條件***的必要性,利用這個關係,可以來求出每一個x的對應值.

  1837年,德國數學家狄裡克雷認為怎樣去建立x與y之間的對應關係是無關緊要的,所以他的定義是:“如果對於x的每一個值,y總有一個完全確定的值與之對應,則y是x的函式.”這個定義抓住了概念的本質屬性,變數y稱為x的函式,只需有一個法則存在,使得這個函式取值範圍中的每一個值,有一個確定的y值和它對應就行了,不管這個法則是公式或圖象或表格或其他形式.這個定義比前面的定義帶有普遍性,為理論研究和實際應用提供了方便.因此,這個定義曾被比較長期的使用著.

  自從德國數學家康托爾的集合論被大家接受後,用集合對應關係來定義函式概念就是現在中學課本里用的了.

  數學手抄報內容:數學中函式的易錯點

  易錯點1:各個待定係數表示的的意義。

  易錯點2:熟練掌握各種函式解析式的求法,有幾個的待定係數就要幾個點值。

  易錯點3:利用影象求不等式的解集和方程***組***的解,利用影象性質確定增減性。

  易錯點4:兩個變數利用函式模型解實際問題,注意區別方程、函式、不等式模型解決不等領域的問題。

  易錯點5:利用函式圖象進行分類***平行四邊形、相似、直角三角形、等腰三角形***以及分類的求解方法。

  易錯點6:與座標軸交點座標一定要會求。面積最大值的求解方法,距離之和的最小值的求解方法,距離之差最大值的求解方法。

  易錯點7:數形結合思想方法的運用,還應注意結合影象性質解題。函式圖象與圖形結合學會從複雜圖形分解為簡單圖形的方法,圖形為影象提供資料或者影象為圖形提供資料。

  易錯點8:自變數的取值範圍有:二次根式的被開方數是非負數,分式的分母不為0,0指數底數不為0,其它都是全體實數。