高中數學對數函式教案
對數函式是6類基本初等函式之一,下面小編為你整理了,希望對你有幫助。
數學對數函式教案【教學目標】
1.掌握對數函式的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用.
***1*** 能在指數函式及反函式的概念的基礎上理解對數函式的定義,瞭解對底數的要求,及對定義域的要求,能利用互為反函式的兩個函式圖象間的關係正確描繪對數函式的圖象.
***2*** 能把握指數函式與對數函式的實質去研究認識對數函式的性質,初步學會用對數函式的性質解決簡單的問題.
2.通過對數函式概念的學習,樹立相互聯絡相互轉化的觀點,通過對數函式圖象和性質的學習,滲透數形結合,分類討論等思想,注重培養學生的觀察,分析,歸納等邏輯思維能力.
3.通過指數函式與對數函式在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數學的積極性.
數學對數函式教案【教學建議】
教材分析
***1*** 對數函式又是函式中一類重要的基本初等函式,它是在學生已經學過對數與常用對數,反函式以及指數函式的基礎上引入的.故是對上述知識的應用,也是對函式這一重要數學思想的進一步認識與理解.對數函式的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函式知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今後學習對數方程,對數不等式的基礎.
***2*** 本節的教學重點是理解對數函式的定義,掌握對數函式的圖象性質.難點是利用指數函式的圖象和性質得到對數函式的圖象和性質.由於對數函式的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關係和反函式概念的基礎上,故應成為教學的重點.
***3*** 本節課的主線是對數函式是指數函式的反函式,所有的問題都應圍繞著這條主線展開.而通過互為反函式的兩個函式的關係由已知函式研究未知函式的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節課的難點.
教法建議
***1*** 對數函式在引入時,就應從學生熟悉的指數問題出發,通過對指數函式的認識逐步轉化為對對數函式的認識,而且畫對數函式圖象時,既要考慮到對底數 的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個座標系內,便於觀察圖象的特徵,找出共性,歸納性質.
***2*** 在本節課中結合對數函式教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函式這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.
數學對數函式教案【教學設計示例】
一. 引入新課
一. 對數函式的概念
1. 定義:函式 的反函式 叫做對數函式.
由於定義就是從反函式角度給出的,所以下面我們的研究就從這個角度出發.如從定義中你能瞭解對數函式的什麼性質嗎?最初步的認識是什麼?
教師可提示學生從反函式的三定與三反去認識,從而找出對數函式的定義域為 ,對數函式的值域為 ,且底數 就是指數函式中的 ,故有著相同的限制條件 .
在此基礎上,我們將一起來研究對數函式的影象與性質.
二.對數函式的影象與性質 ***板書***
1. 作圖方法
提問學生打算用什麼方法來畫函式影象?學生應能想到利用互為反函式的兩個函式影象之間的關係,利用影象變換法畫圖.同時教師也應指出用列表描點法也是可以的,讓學生從中選出一種,最終確定用影象變換法畫圖.
由於指數函式的影象按 和 分成兩種不同的型別,故對數函式的影象也應以1為分界線分成兩種情況 和 ,並分別以 和 為例畫圖.
具體操作時,要求學生做到:
***1*** 指數函式 和 的影象要儘量準確***關鍵點的位置,影象的變化趨勢等***.
***2*** 畫出直線 .
***3*** 的影象在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的影象在翻折時可提示學生分兩段翻折,在左側的先翻,然後再翻在 右側的部分.
學生在筆記本完成具體操作,教師在學生完成後將關鍵步驟在黑板上演示一遍,畫出
和 的影象.***此時同底的指數函式和對數函式畫在同一座標系內***如圖:
2. 草圖.
教師畫完圖後再利用投影儀將 和 的影象畫在同一座標系內,如圖:
然後提出讓學生根據影象說出對數函式的性質***要求從幾何與代數兩個角度說明***
3. 性質
***1*** 定義域:
***2*** 值域:
由以上兩條可說明影象位於 軸的右側.
***3*** 截距:令 得 ,即在 軸上的截距為1,與 軸無交點即以 軸為漸近線.
***4*** 奇偶性:既不是奇函式也不是偶函式,即它不關於原點對稱,也不關於 軸對稱.
***5*** 單調性:與 有關.當 時,在 上是增函式.即影象是上升的
當 時,在 上是減函式,即影象是下降的.
之後可以追問學生有沒有最大值和最小值,當得到否定答案時,可以再問能否看待何時函式值為正?學生看著圖可以答出應有兩種情況:
學生回答後教師可指導學生巧記這個結論的方法:當底數與真數在1的同側時函式值為正,當底數與真數在1的兩側時,函式值為負,並把它當作第***6***條性質板書記下來.
最後教師在總結時,強調記住性質的關鍵在於要腦中有圖.且應將其性質與指數函式的性質對比記憶.***特別強調它們單調性的一致性***
對影象和性質有了一定的瞭解後,一起來看看它們的應用.
數學對數函式教案【簡單應用】
1. 研究相關函式的性質
例1. 求下列函式的定義域:
***1*** ***2*** ***3***
先由學生依次列出相應的不等式,其中特別要注意對數中真數和底數的條件限制.
2. 利用單調性比較大小 ***板書***
例2. 比較下列各組數的大小
***1*** 與 ; ***2*** 與 ;***3*** 與 ; ***4*** 與 .
讓學生先說出各組數的特徵即它們的底數相同,故可以構造對數函式利用單調性來比大小.最後讓學生以其中一組為例寫出詳細的比較過程.