高中數學教學設計案例

  教學案例是真實而又典型且含有問題的事件。數學運用教學案例是一種有用的教學方法。下面就是小編給大家整理的,希望對你有用!

  篇1

  一、什麼是教學案例

  教學案例是真實而又典型且含有問題的事件。簡單地說,一個教學案例就是一個包含有疑難問題的實際情境的描述,是一個教學實踐過程中的故事,描述的是教學過程中“意料之外,情理之中的事”。

  這可以從以下幾個層次來理解:

  教學案例是事件:教學案例是對教學過程中的一個實際情境的描述。它講述的是一個故事,敘述的是這個教學故事的產生、發展的歷程,它是對教學現象的動態性的把握。

  教學案例是含有問題的事件:事件只是案例的基本素材,並不是所有的教學事件都可以成為案例。能夠成為案例的事件,必須包含有問題或疑難情境在內,並且也可能包含有解決問題的方法在內。正因為這一點,案例才成為一種獨特的研究成果的表現形式。

  案例是真實而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來一定的啟示和體會。案例與故事之間的根本區別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發生的事件,是教學事件的真實再現。是對“當前”課堂中真實發生的實踐情景的描述。它不能用“搖擺椅子上杜撰的事實來替代”,也不能從抽象的、概括化的理論中演繹的事實來替代。

  二、如何進行教學案例研究

  教學案例是教師教學行為真實、典型的記錄,也是教師教學理念和教學思想的真實體現。因此它是教育教學研究的寶貴資源,也是教師之間交流的重要媒介。進行教學案例的研究是教師不斷反思、改進自己教學的一種方法,能促使教師更為深刻地認識到自己工作中的重點和難點。這個過程就是教師自我教育和成長的過程。

  那麼如何進行教學案例研究呢?一般情況下,案例研究的程式基本有以下兩個環節:案例研究的準備及實施、案例研究報告的撰寫與反思。

  ***一***案例研究的準備與實施

  1.研究主題的選擇

  案例研究都要有研究的重點和主題,這個主題常與教學改革的核心理念、常見的疑難問題和困惑事件相關,一般來說可以從教學的各個方面確定研究的主題,如從教師教學行為確定主題——教學材料的選擇、教學中的提問、教學媒體的使用、教學評價語言、課堂教學調控行為等;也可以從學生的學習方式確定主題——探究性學習、問題解決學習、合作學習、實踐性活動等。另外從學科特點、教學內容等都可以確定研究的主題。

  研究者要了解當前教學的大背景,教改的大方向,要熟悉相關的《課程標準》和有針對性地作一些理論準備。還要通過有關的調查,蒐集詳盡的材料***如閱讀教師的教學設計,進行訪談等***,同時初步確定案例研究的方向、研究任務,即初步確定案例的內容是關於教學策略、學生行為或是教學技能的研究。

  一般來說,案例研究主題的確定往往需要思考下面一些問題:即研究的事件是否對於自我發現更有潛力?選擇的事件對學生是否有較大的情感影響***心靈是否受到震撼***?關鍵事件再現了前人***或自己***過去成功的行為嗎?事件呈現的是一個你不能確定怎樣解決的問題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個與道德或道義上相關的問題嗎?研究的主題如果反映以上的一些內容,那麼這樣的案例研究在自我學習、內省和深層次理解方面就可能更加富有成效。

  高中數學教學案例研究的主題內容主要集中在三方面:***1***學科特點的體現:如數學思想方法的教學、數學思維品質的培養、本質屬性的抽象、數學結論的推廣等;***2***學生數學學習規律的探究:如數學學習習慣、解決問題的思維方式、獨立思考與合作學習等;***3***教師專業知識的提升:如數學板書與電子螢幕的展示對學生思維的影響、數學語言的訓練對人們思維的影響、數學知識模式化教學的優劣等。

  2.案例研究的基本方法

  ***1***課堂觀察。觀察方法是指研究者按照一定的目的和計劃,在課堂教學活動的自然狀態下,用自己的感官和輔助工具對研究物件進行觀察研究的一種方法。它可以是教師自己對教學物件——學生,在課堂活動中的片斷進行觀察,也可以由其他教師來實施觀察,這兩種觀察的目的都是為了掌握課堂教學中的第一手資料。課堂觀察方法不限於用肉眼觀察、耳聽手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀察的手段,以提高觀察的效果。對觀察的資料,可以逐字逐句整理成課堂教學實錄、教學程式表、提問技巧水平檢核表、提問行為型別頻次表、課堂教學時間分配表等,以便以後繼續分析案例提供翔實的原始材料。

  ***2***訪談與調查。對一些課堂教學不能觀察到的師生內心活動,如教師教學的目的、教學程式的意圖、教學手段的運用以及教學達標的成效等一些需要進一步瞭解的問題,可以通過與執教教師的交談以及和學生的座談,以豐富和充實課堂教學觀察的材料;對學生在課堂教學活動中回答問題的心理狀態、解題思路等問題,也可以在課後做一些問卷調查;對學生達標的成度、效度,也可以作一些測試調查。從這些訪談、調查的材料中,再分析課堂教學的現象,不難發現造成各種課堂現象與教師教學行為之間的因果關係,然後再具體尋找在哪個教學環節中出現問題,從中提煉出解決問題的對策。

  ***3***文獻分析。文獻分析是通過查閱文獻資料,從過去和現在的有關研究成果中受到啟發,從中找到課堂教學現象的理論依據,從而增強案例分析的說服力。當然,對廣大第一線教師而言,這裡所運用的文獻分析方法,並不是為了論證新教育理論,也不是去歸納教育的巨集觀現象,而是通過有關教育理論文獻的查閱,去進一步解讀課堂教學的活動,挖掘案例中的教育思想。如在數學教學中,我們常常通過學生的動手操作來獲得有關的數學概念、法則與公式,那麼,為什麼要這樣做呢?就可以帶著問題,查閱、分析有關文獻資料,從學習中提高研究者自身的理論水平。

  ***二***案例研究報告的撰寫

  1.常見的案例報告格式

  撰寫教學案例,結構可以靈活多樣,並非要千篇一律、一個模式,而是可以有不同的表現形式,如“案例背景——案例描述——案例分析”、“案例過程——案例反思”、“課例——問題——分析”、“主題與背景——情景描述——問題討論——詮釋與研究”等。當前,國內外課堂教學案例編寫的格式有多種多樣。但不管何種編寫格式,它們都有兩個共同的特點:一是對案例的客觀描述;二是對案例中所述問題、關鍵教學事件等的分析。

  下面介紹兩種常用的案例編寫的格式:

  ***1***“描述+分析”式

  此格式的特點是將整個案例分為兩大部分,前半部分主要為描述課堂教學活動的情景,後半部分主要針對情景中的一個問題進行理論分析並獲得結論。案例的描述一般是把課堂教學活動中的某一片斷像講故事一樣原原本本地、具體生動地描繪出來。描述的形式可以是一串問答式的課堂對話,也可以概括式地敘述,主要是提供一個或一連串課堂教學疑難的問題,並把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對描述的情景發表個人或多人的感受,同時加以理論的分析與說明。分析方法可以是對描述中提出的一個問題,從幾個方面加以分析:也可以是對描述中的幾個問題,集中從一個方面加以分析。分析的目的是要從描述的情景中提煉問題的本質,講述理論的解釋,明確正確的方法,最終獲得對關鍵教學事件的正確把握。

  ***2***“背景+描述+問題+詮釋”式

  此格式是一種要求比較高的編寫格式,而且,它在實際教學中的作用也更大。通常它將整個案例分為四個部分:

  A.主題與背景

  主題是關鍵教學事件中所反映的案例主要觀點,也是整篇案例的核心思想。背景主要敘述案例發生的地點、時間、人物的一些基本情況。當然,這部分的內容不宜很長,只需提綱挈領敘述清楚即可。

  B.情景描述

  與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學活動。

  C.問題討論

  這是根據主題要求與情景描述,進行的分析、歸納、總結與提煉,包括學科知識的要點、教學法和情景特點以及案例的說明與注意事項。這部分內容主要是為案例教學服務的,目的是提高教師的認識水平與學生主動學習的能力。不同的教學觀念,不同的教學手段,所提出的問題也不同。對案例中所提出的主題以及情景描述中提出的問題闡述自己的見解。

  D.詮釋與研究

  這部分主要是用教育理論對案例情景作多角度的解讀。它包括對課堂教學行為的技術資料、課堂教學實錄以及教學活動背後的故事等作理論上的分析。例如,在課堂教學中,我們常看到這樣的現象,課堂教學的效果高於預期的目標,反之教師期望的目標學生沒有達到或有所偏離,教學內容呈現的先後與學生理解的程度、教學方法運用與學生內在動機的激發等環節存在著矛盾,這些事件的背後,必然隱含著豐富的教育思想。所以,通過詮釋,挖掘這些事件背後的內在思想,揭示其教育規律就顯得十分的必要。

  2.案例報告撰寫的關鍵

  ***1***掌握四個原則。要寫好教學案例,除了平時多積累素材,學習他人的案例作品以提高寫作技巧外,還應把握以下四點:

  A.主題性原則:要有捕捉關鍵教學事件的意識,以此確定案例研究的主題。為此要注意瞭解新的課程改革的動向、把握適合時代要求的數學教育方式、明確學生數學學習的難點和重點,尋找數學教師專業發展的途徑與規律。報告圍繞主題進行情景描述和獲得解決問題的策略。這種描述不是簡單的教學活動實錄,要反映事件發生的過程,重點描述反映關鍵教學事件的變化和戲劇化的情境,猶如記敘文寫作,突出主題,詳寫重點,雕刻高潮。

  案例鮮明的主題通常關係到教學的核心理念、常見問題、處理方法等等,可以說,主題就是案例的靈魂。而主題的最佳表現形式就是文題直接體現主題。因此,設計主題就要有新意、有時代感,通俗地說就是與眾不同,要有獨特見解、獨家發現。來源於實踐的教學案例並非都有同等價值,關鍵要看撰寫者對實踐的發展與理論的昇華程度,包括對題目的推敲。如有的教學案例重點描述了有戲劇性的情節,用了“細節決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創意的題目《“導之有方”方能“導之有效”》、《跳出數學教數學》、《在數學的疑難處悟成長》、《捕捉資源因勢利導》等等,讓人一看題目就有閱讀的慾望。實踐證明,在寫作案例時,選擇有感悟、有新意的內容,在明確主題,恰當擬題後再動筆,才能寫出高質量的案例。

  B.理論性原則:解決問題的策略中應當蘊含一定的教育基本原理和教育思想。實際是將自己對教育理念以及教育基本原理的理解滲透於描述的字裡行間,比如學生做了什麼,參與程度,投入程度如何,教師如何引導點撥,師生心理、行為變化情況等,無不體現教師的教學思想和教育基本原理。

  C.敘事性原則:案例報告的書寫方式是敘事式,它不同於論述式。敘事方式必須以課堂教學生動的事實為主要情節,可以夾敘夾議,也可以選擇情景片段,可以是一節課中的情景,也可以是圍繞一個主題的幾節課的情景片段。

  D.學科性原則:數學案例報告一定要體現學科的特徵,要有較深刻的理性思考,要反映數學的基本思想與方法,要符合課程標準,滿足教材內容的呈現方法,積極培養良好的思維習慣。就是撰寫者的教育思想和教育理念在教學實踐中具體體現。

  ***2***用好四種表述。教學案例的表述方法很多,可以歸納為以下四種方法:

  A.故事式陳述法:就是教學全程或某一精彩教學片段實錄,包括教師和學生的一言一行。陳述時,根據操作程式作一點“簡評”,最後作“總評”。

  B.以案說理:對教學過程進行陳述時,捨去與文題不相關或不重要的部分,並強化與主題相關的重要情節,尤其是引發高潮的關鍵行為,然後有較長篇幅的理性思考。

  C.圖表展示法:用圖表進行統計的形式體現撰寫者的教育思想,給人以一目瞭然的感覺,幫助讀者迅速瞭解撰寫者的寫作意圖,是常用的一種案例撰寫方法。比如,描述學生的參與人數,投入程度,解決問題的質量等多個問題,都可以在一張或數張圖表上用百分比或個***次***數進行統計。在每一張圖表後,應有一段“分析”或“結論”,將撰寫者的教學理念進行理性闡述,亦可在圖表展示後,總的提出自己對案例的分析和建議。

  D.分析討論法:在撰寫時,應汲取分析討論中最精彩的部分做深入、細緻的全面記錄,最後撰寫者還必須對討論情況做一分析,或提出一些值得今後進一步思考的問題。

  3.優秀案例的特徵

  ***1***時代性:一個好的案例描述的是現實生活場景——案例的敘述要把事件置於一個時空框架之中,應該以關注今天所面臨的疑難問題為著眼點,至少應該是近年發生的事情,展示的整個事實材料應該與整個時代及教學背景相照應,這樣的案例讀者更願意接觸。一個好的案例可以使讀者有身臨其境的感覺,並對案例所涉及的人產生移情作用。

  ***2***真實性:一個好的案例應該包括從案例所反映的物件那裡引述的材料——案例寫作必須持一種客觀的態度,因此可引述一些口頭的或書面的、正式的或非正式的材料,如對話、筆記、信函等,以增強案例的真實感和可讀性。重要的事實性材料應註明資料來源。

  ***3***適用性:一個好的案例需要針對面臨的疑難問題提出解決辦法——案例不能只是提出問題,它必須提出解決問題的主要思路、具體措施,幷包含著解決問題的詳細過程,這應該是案例寫作的重點。如果一個問題可以提出多種解決辦法的話,那麼最為適宜的方案,就應該是與特定的背景材料相關最密切的那一個。如果有包治百病、普遍適用的解決問題的辦法,那麼案例這種形式就不必要存在了。

  ***4***反思性:一個好的案例需要有對已經做出的解決問題的決策的評價——評價是為了給新的決策提供參考點。可在案例的開頭或結尾寫下案例作者對自己解決問題策略的評論,以點明案例的基本論點及其價值。

  三、案例研究過程中需注意的問題

  1.選材面過窄。從內容上看,多數案例是關於課堂教學甚至侷限於一節課的研究,往往不能說明問題,或者在一節課中,也只會從簡單的對話分析問題,做不到全方位、多角度。這說明教師對教學情境的豐富性、複雜性和聯絡性認識不夠。

  2.缺乏典型性。有的案例對教學實踐沒有挖掘與反思,隨意摘取一些教學片段泛泛而談、人云亦云,沒有實用價值。不能夠通過對某一事件現象的分析、處理、詮釋,達到舉一反三的效果,這樣的案例對他人沒什麼借鑑作用。

  3.主題不明確。主要體現為:

  ***1***主題渙散。有的案例象記流水帳,沒有根據需要進行恰當的取捨,看不出作者要反映、探討什麼問題,缺乏指導性、創新性和參考性。

  ***2***定題過於隨意。有的案例直接用案例研究依據的文題為題目,如《“三角函式”教學案例》、《“拋物線”教學案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。

  4.結構不合理。案例作為一種文體,有它自己的寫作結構,只有優化案例的結構,才能增強案例的可讀性和指導性。如寫成一般的教學設計,一般包括“備課思路、教學目標、教學重點、教學方法、課前準備、教學內容、教學過程”等內容;寫成教學實錄,把一堂課從頭到尾詳盡地記錄下來,再寫上作者的看法;重記錄輕分析,過程描述多,評析少等等。沒有創新,平淡無趣,看不出案例研究和反映的問題。

  5.描述與分析脫節。有的案例描述與分析矛盾,讓人不知所云;有時反映的是一種觀點,分析闡明的是另一種觀點,雖然不矛盾,但聯絡不緊密;有的分析中熱衷於抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無物。

  篇2

  一、教學內容分析

  圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐後的高度抽象.恰當地利用定義解題,許多時候能以簡馭繁.因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質後,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

  二、學生學習情況分析

  我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。

  三、設計思想

  由於這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情.在教學時,藉助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕鬆愉快的環境中發現、獲取新知,提高教學效率.

  四、教學目標

  1.深刻理解並熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點座標、頂點座標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

  2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

  3.藉助多媒體輔助教學,激發學習數學的興趣.

  五、教學重點與難點:

  教學重點

  1.對圓錐曲線定義的理解

  2.利用圓錐曲線的定義求“最值”

  3.“定義法”求軌跡方程

  教學難點:

  巧用圓錐曲線定義解題

  六、教學過程設計

  【設計思路】

  ***一***開門見山,提出問題

  一上課,我就直截了當地給出——

  例題1:***1*** 已知A***-2,0***, B***2,0***動點M滿足|MA|+|MB|=2,則點M的軌跡是*** ***。

  ***A***橢圓 ***B***雙曲線 ***C***線段 ***D***不存在

  ***2***已知動點 M***x,y***滿足***x1***2***y2***2|3x4y|,則點M的軌跡是*** ***。

  ***A***橢圓 ***B***雙曲線 ***C***拋物線 ***D***兩條相交直線

  【設計意圖】

  定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之後,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。

  為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。

  【學情預設】

  估計多數學生能夠很快回答出正確答案,但是部分學生對於圓錐曲線的定義可能並未真正理解,因此,在學生們回答後,我將要求學生接著說出:若想答案是其他選項的話,條件要怎麼改?這對於已學完圓錐曲線這部分知識的學生來說,並不是什麼難事。但問題***2***就可能讓學生們費一番周折—— 如果有學生提出:可以利用變形來解決問題,那麼我就可以循著他的思路,先對原等式做變形:***x1***2***y2***2

  5這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子|3x4y|

  5

  入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。

  在對學生們的解答做出判斷後,我將把問題引申為:該雙曲線的中心座標是 ,實軸長為 ,焦距為 。以深化對概念的理解。

  ***二***理解定義、解決問題

  例2 ***1***已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內切,求△ABC面積的最大值。

  ***2***在***1***的條件下,給定點P***-2,2***, 求|PA|

  【設計意圖】

  運用圓錐曲線定義中的數量關係進行轉化,使問題化歸為幾何中求最大***小***值的模式,是解析幾何問題中的一種常見題型,也是學生們比較容易混淆的一類問題。例2的設定就是為了方便學生的辨析。

  【學情預設】

  根據以往的經驗,多數學生看上去都能順利解答本題,但真正能完整解答的可能並不多。事實上,解決本題的關鍵在於能準確寫出點A的軌跡,有了練習題1的鋪墊,這個問題對學生們來講就顯得頗為簡單,因此面對例2***1***,多數學生應該能準確給出解答,但是對於例2***2***這樣相對比較陌生的問題,學生就無從下手。我提醒學生把3/5和離心率聯絡起來,這樣就容易和第二定義聯絡起來,從而找到解決本題的突破口。

  ***三***自主探究、深化認識

  如果時間允許,練習題將為學生們提供一次數學猜想、試驗的機會——

  練習:設點Q是圓C:***x1***2225|AB|的最小值。 3y225上動點,點A***1,0***是圓內一點,AQ的垂直平分線與CQ交於點M,求點M的軌跡方程。

  引申:若將點A移到圓C外,點M的軌跡會是什麼?

  【設計意圖】 練習題設定的目的是為學生課外自主探究學習提供平臺,當然,如果課堂上時間允許的話,

  可藉助“多媒體課件”,引導學生對自己的結論進行驗證。

  【知識連結】

  ***一***圓錐曲線的定義

  1. 圓錐曲線的第一定義

  2. 圓錐曲線的統一定義

  ***二***圓錐曲線定義的應用舉例

  x2y2

  1.雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P169

  到右準線的距離。

  |PF1||PF2|2.P為等軸雙曲線x2y2a2上一點, F1、F2為兩焦點,O為雙曲線的中心,求的|PO|

  取值範圍。

  3.在拋物線y22px上有一點A***4,m***,A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的座標。

  x2y2

  4.***1***已知點F是橢圓1的右焦點,M是這橢圓上的動點,A***2,2***是一個定點,求259

  高中數學教學案例反思精選4篇高中數學教學案例反思精選4篇|MA|+|MF|的最小值。

  x2y211***2***已知A***,3***為一定點,F為雙曲線1的右焦點,M在雙曲線右支上移動,當9272

  1|AM||MF|最小時,求M點的座標。 2

  x2

  ***3***已知點P***-2,3***及焦點為F的拋物線y,在拋物線上求一點M,使|PM|+|FM|最小。 8

  x2y2

  5.已知A***4,0***,B***2,2***是橢圓1內的點,M是橢圓上的動點,求|MA|+|MB|的最259

  小值與最大值。

  七、教學反思

  1.本課將藉助於“POWERPOINT課件”,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優勢。

  2.利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法. 循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”併為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量並不會小。

  總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節奏仍是我今後工作中的一個重要研究課題.而要能真正進行素質教育,培養學生的創新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發起求知的慾望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,於不知不覺中改善了他們的思維品質,提高了數學思維能力。

  篇3

  1.對數學概念的反思——學會數學的思考

  對於學生來說,學習數學的一個重要目的是要學會數學的思考,用數學的眼光去看世界去了解世界。而對於數學教師來說,他還要從“教”的角度去看數學去挖掘數學,他不僅要能“做”、“會理解”,還應當能夠教會別人去“做”、去“理解”,因此教師對教學概念的反思應當從邏輯的、歷史的、關係、辨證等方面去展開。

  以函式為例:

  ● 從邏輯的角度看,函式概念主要包含定義域、值域、對應法則三要素,以及函式的單調性、奇偶性、週期性、對稱性等性質和一些具體的特殊函式,如:指數函式、對數函式等這些內容是函式教學的基礎,但不是函式的全部。

  ● 從關係的角度來看,不僅函式的主要內容之間存在著種種實質性的聯絡,函式與其他中學數學內容也有著密切的聯絡。

  方程的根可以作為函式的圖象與軸交點的橫座標;

  不等式的解就是函式的圖象在軸上方的那一部分所對應的橫座標的集合;

  數列也就是定義在自然數集合上的函式;

  ……

  同樣的幾何內容也與函式有著密切的聯絡。

  ……

  2.對學數學的反思

  教師在教學生是不能把他們看著“空的容器”,按照自己的意思往這些“空的容器”裡“灌輸數學”這樣常常會進入誤區,因為師生之間在數學知識、數學活動經驗、興趣愛好、社會生活閱歷等方面存在很大的差異,這些差異使得他們對同一個教學活動的感覺通常是不一樣的。

  要想多“製造”一些供課後反思的數學學習素材,一個比較有效的方式就是在教學過程中儘可能多的把學生頭腦中問題“擠”出來,使他們解決問題的思維過程暴露出來。

  3.對教數學的反思

  教得好本質上是為了促進學得好。但在實際教學過程中是否能夠合乎我們的意願呢?

  我們在上課、評卷、答疑解難時,我們自以為講清楚明白了,學生受到了一定的啟發,但反思後發現,自己的講解並沒有很好的針對學生原有的知識水平,從根本上解決學生存在的問題,只是一味的想要他們按照某個固定的程式去解決某一類問題,學生當時也許明白了,但並沒有理解問題的本質性的東西。

  教學反思的四個視角

  1.自我經歷

  在教學中,我們常常把自己學習數學的經歷作為選擇教學方法的一個重要參照,我們每一個人都做過學生,我們每一個人都學過數學,在學習過程中所品嚐過的喜怒哀樂,緊張、痛苦和歡樂的經歷對我們今天的學生仍有一定的啟迪。

  當然,我們已有的數學學習經歷還不夠給自己提供更多、更有價值、可用作反思的素材,那麼我們可以“重新做一次學生”以學習者的身份從事一些探索性的活動,並有意識的對活動過程的有關行為做出反思。

  2.學生角度

  教學行為的本質在於使學生受益,教得好是為了促進學得好。我們教師在備課時把要講的問題設計的十分精巧,連板書都設計好了,表面上看天衣無縫,其實,任何人都會遭遇失敗,教師把自己思維過程中失敗的部分隱瞞了,最有意義,最有啟發的東西抽掉了,學生除了讚歎我們教師的高超的解題能力以外,又有什麼收穫呢?所以貝爾納說“構成我們學習上最大障礙的是已知的東西,而不是未知的東西”

  大數學家希爾伯特的老師富士在講課時就常把自己置於困境中,並再現自己從中走出來的過程,讓學生看到老師的真實思維過程是怎樣的。人的能力只有在逆境中才能得到最好的鍛鍊。經常去問問學生,對數學學習的感受,藉助學生的眼睛看一看自己的教學行為,是促進教學的必要手段。

  3.與同事交流

  ●同事之間長期相處,彼此之間形成了可以討論教學問題的共同語言、溝通方式和寬鬆氛圍,便於展開有意義的討論。

  ● 由於所處的教學環境相似、所面對的教學物件知識和能力水平相近,因此容易找到共同關注的教學問題展開對彼此都有成效的交流。

  ● 交流的方式很多,比如:共同設計教學活動、相互聽課、做課後分析等等。交流的話題包括:

  我覺得這堂課的地方是……,我覺得這堂課糟糕的地方是……;這個地方的處理不知道怎麼樣?如果是你會怎麼處理?

  我本想在這裡“放一放”學生,但怕收不回來,你覺得該怎麼做?

  合作解決問題——共同從事教學設計,從設計的依據、出發點,到教學重心、基本教學過程,甚至富有創意的素材或問題。更為重要的是這樣的設計要為其後的教學反思留下空間。

  4. 參考資料

  學習相關的數學教育理論,我們能夠對許多實踐中感到疑惑的現象做出解釋;能夠對存在與現象背後的問題有比較清楚的認識;能夠更加理智的看待自己和他人教學經驗;能夠更大限度的做出有效的教學決策。

  閱讀數學教學理論可以開闊我們教學反思行為的思路,不在總是侷限在經驗的小天地,我們能夠看到自己的教學實踐行為有哪些與特定的教學情境有關、哪些更帶有普遍的意義,從而對這些行為有較為客觀的評價。能夠使我們更加理性的從事教學反思活動並對反思得到的結論更加有信心。

  更為重要的是,閱讀教學理論,可以使我們理智的看待自己教學活動中“熟悉的”、“習慣性”的行為,能夠從更深刻的層面反思題目進而使自己的專業發展走上良性發展的軌道。

  教師的職業需要專門化,教師的專業發展是不可或缺的,它的最為便利而又十分有效的途徑是教學反思。沒有反思,專業能力不可能有實質性的提高,而教學反思的物件和機會就在每一個教師的身邊.

  高中數學教學案例反思三:高中數學教學反思案例***3554字***

  一。對數學概念教學的一點反思

  對於學生來說,學習數學的一個重要目的是要學會數學的思考,用數學的眼光去看世界,去了解世界。而對於數學教師來說,他還要從“教”的角度去看數學去挖掘數學,他不僅要能“做”、“會理解”,還應當能夠教會別人去“做”、去“理解”,因此教師對教學概念的反思應當從邏輯的、歷史的、辨證的等方面去展開。

  下面以函式為例:

  1。從邏輯的角度看,函式概念主要包含定義域、值域、對應法則三要素,以及函式的單調性、奇偶性、週期性、對稱性等性質和一些具體的特殊函式,如:指數函式、對數函式等這些內容是函式教學的基礎,但不是函式的全部。

  2。從關係的角度來看,不僅函式的主要內容之間存在著種種實質性的聯絡,函式與其他中學數學內容也有著密切的聯絡。

  方程的根可以作為函式的圖象與軸交點的橫座標;

  不等式的解就是函式的圖象在軸上方的那一部分所對應的橫座標的集合;數列也就是定義在自然數集合上的函式;

  同樣的幾何內容也與函式有著密切的聯絡。

  ……

  教師在教學生是不能把他們看著“空的容器”,按照自己的意思往這些“空的容器”裡“灌輸數學”這樣常常會進入誤區,因為師生之間在數學知識、數學活動經驗、興趣愛好、社會生活閱歷等方面存在很大的差異,這些差異使得他們對同一個教學活動的感覺通常是不一樣的。

  要想多“製造”一些供課後反思的數學學習素材,一個比較有效的方式就是在教學過程中儘可能多的把學生頭腦中問題“擠”出來,使他們解決問題的思維過程暴露出來。

  二。對數學教學方法的幾點啟示

  本人從事高中數學教學工作將近30年的時間了。在新課程背景下,如何有效利用課堂教學時間,如何儘可能地提高學生的學習興趣,提高學生在課堂上40分鐘的學習效率,這對於剛接觸高中新課改教學的我來說,也是一個很重要的課題。要搞好高中數學新課改,首先要對新課標和新教材有整體的把握和認識,這樣才能將知識系統化,注意知識前後的聯絡,形成知識框架;其次要了解學生的現狀和認知結構,瞭解學生此階段的知識水平,以便因材施教;再次要處理好課堂教學中教師的教和學生的學的關係。課堂教學是實施高中新課程教學的主陣地,也是對學生進行思想品德教育和素質教育的主渠道。課堂教學不但要加強雙基而且要提高智力,要發展學生的創造力;不但要讓學生學會,而且要讓學生會學,特別是自學。尤其是在課堂上,不但要發展學生的智力因素,而且要提高學生在課堂40分鐘的學習效率,在有限的時間裡,出色地完成教學任務,不能穿新鞋走老路。

  1。要有明確的教學目標

  教學目標分為三大目標,即認知目標、情感目標和動作技能目標。因此,在備課時要圍繞這些目標選擇教學的策略、方法和媒體,把內容進行必要的重組。備課時要依據教材,但又不拘泥於教材,靈活運用教材。在數學教學中,要通過師生的共同努力,使學生在知識、能力、技能、心理、思想品德等方面達到預定的目標,以提高學生的綜合素質。

  2。要能突出重點、化解難點

  每一堂課都要有教學重點,而整堂的教學都是圍繞著教學重點來逐步展開的。為了讓學生明確本堂課的重點、難點,教師在上課開始時,可以在黑板的一角將這些內容簡短地寫出來,以便引起學生的重視。講授重點內容,是整堂課的教學高潮。教師要通過聲音、手勢、板書等的變化或應用模型、投影儀等直觀教具,刺激學生的大腦,使學生能夠興奮起來,適當地還可以插入與此類知識有關的笑話,對所學內容在大腦中刻下強烈的印象,激發學生的學習興趣,提高學生對新知識的接受能力。尤其是在選擇例題時,例題最好是呈階梯式展現,我在準備一堂課時,通常是將一節或一章的題目先做完,再針對本節的知識內容選擇相關題目,往往每節課都涉及好幾種題型。

  3。要善於應用現代化教學手段

  在新課標和新教材的背景下,教師掌握現代化的多媒體教學手段顯得尤為重要和迫切。現代化教學手段的顯著特點:一是能有效地增大每一堂課的課容量,從而把原來40分鐘的內容在35分鐘中就加以解決;二是減輕教師板書的工作量,使教師能有精力講深講透所舉例子,提高講解效率;三是直觀性強,容易激發起學生的學習興趣,有利於提高學生的學習主動性;四是有利於對整堂課所學內容進行回顧和小結。在課堂教學結束時,教師引導學生總結本堂課的內容,學習的重點和難點。同時通過投影儀,同步地將內容在瞬間躍然“幕”上,使學生進一步理解和掌握本堂課的內容。在課堂教學中,對於板演量大的內容,如立體幾何中的一些幾何圖形、一些簡單但數量較多的小問答題、文字量較多應用題,複習課中章節內容的總結、選擇題的訓練等等都可以藉助於投影儀來完成。可能的話,教學可以自編電腦課件,藉助電腦來生動形象地展示所教內容。如講授正弦曲線、餘弦曲線的圖形、稜錐體積公式的推導過程都可以用電腦來演示。

  4。根據具體內容,選擇恰當的教學方法

  每一堂課都有規定的教學任務和目標要求。所謂“教學有法,但無定法”,教師要能隨著教學內容的變化,教學物件的變化,教學裝置的變化,靈活應用教學方法。數學教學的方法很多,對於新授課,我們往往採用講授法來向學生傳授新知識。而在立體幾何中,我們還時常穿插演示法,來向學生展示幾何模型,或者驗證幾何結論。如在教授立體幾何之前,要求學生每人用鉛絲做一個立方體的幾何模型,觀察其各條稜之間的相對位置關係,各條稜與正方體對角線之間、各個側面的對角線之間所形成的角度。這樣在講授空間兩條直線之間的位置關係時,就可以通過這些幾何模型,直觀地加以說明。此外,我們還可以結合課堂內容,靈活採用談話、讀書指導、作業、練習等多種教學方法。在一堂課上,有時要同時使用多種教學方法。“教無定法,貴要得法”。只要能激發學生的學習興趣,提高學生的學習積極性,有助於學生思維能力的培養,有利於所學知識的掌握和運用,都是好的教學方法。

  5。關愛學生,及時鼓勵

  高中新課程的宗旨是著眼於學生的發展。對學生在課堂上的表現,要及時加以總結,適當給予鼓勵,並處理好課堂的偶發事件,及時調整課堂教學。在教學過程中,教師要隨時瞭解學生對所講內容的掌握情況。如在講完一個概念後,讓學生複述;講完一個例題後,將解答擦掉,請中等水平學生上臺板演。有時,對於基礎差的學生,可以對他們多提問,讓他們有較多的鍛鍊機會,同時教師根據學生的表現,及時進行鼓勵,培養他們的自信心,讓他們能熱愛數學,學習數學。

  6。充分發揮學生主體作用,調動學生的學習積極性

  學生是學習的主體,教師要圍繞著學生展開教學。在教學過程中,自始至終讓學生唱主角,使學生變被動學習為主動學習,讓學生成為學習的主人,教師成為學習的領路人。

  在一堂課中,教師儘量少講,讓學生多動手,動腦操作,剛畢業那會,每次上課,看到學生一道題目往往要思考很久才能探究出答案,我就有點心急,每次都忍不住在他們即將做出答案的時候將方法告訴他們。這樣容易造成學生對老師的依賴,不利於培養學生獨立思考的能力和新方法的形成。學生的思維本身就是一個資源庫,學生往往會想出我意想不到的好方法來。

  7。切實重視基礎知識、基本技能和基本方法

  眾所周知,近年來數學試題的新穎性、靈活性越來越強,不少師生把主要精力放在難度較大的綜合題上,認為只有通過解決難題才能培養能力,因而相對地忽視了基礎知識、基本技能、基本方法的教學。教學中急急忙忙把公式、定理推證拿出來,或草草講一道例題就通過大量的題目來訓練學生。其實定理、公式推證的過程就蘊含著重要的解題方法和規律,教師沒有充分暴露思維過程,沒有發掘其內在的規律,就讓學生去做題,試圖通過讓學生大量地做題去“悟”出某些道理。結果是多數學生“悟”不出方法、規律,理解浮淺,記憶不牢,只會機械地模仿,思維水平較低,有時甚至生搬硬套;照葫蘆畫瓢,將簡單問題複雜化。如果教師在教學中過於粗疏或學生在學習中對基本知識不求甚解,都會導致在考試中判斷錯誤。不少學生說:現在的試題量過大,他們往往無法完成全部試卷的解答,而解題速度的快慢主要取決於基本技能、基本方法的熟練程度及能力的高低。可見,在切實重視基礎知識的落實中同時應重視基本技能和基本方法的培養。

  8。滲透教學思想方法,培養綜合運用能力

  常用的數學思想方法有:轉化的思想,類比歸納與類比聯想的思想,分類討論的思想,數形結合的思想以及配方法、換元法、待定係數法、反證法等。這些基本思想和方法分散地滲透在中學數學教材的條章節之中。在平時的教學中,教師要在傳授基礎知識的同時,有意識地、恰當在講解與滲透基本數學思想和方法,幫助學生掌握科學的方法,從而達到傳授知識,培養能力的目的。只有這樣,學生才能靈活運用和綜合運用所學的知識。

  總之,在新課程背景下的數學課堂教學中,要提高學生在課堂40分鐘的學習效率,要提高教學質量,我們就應該多思考、多準備,充分做到備教材、備學生、備教法,提高自身的教學機智,發揮自身的主導作用。

  高中數學教學案例反思四:高中數學教學案例反思***1794字***

  本人任教高中數學新課程已有三年,通過實踐,對高中新課程的教學理念有了進一步的瞭解,對新課標下的具體教學實施有了一些經驗或想法。以下就是自己在新課改背景下,對一些教學內容所做的思考與體會。

  一、將數學教學內容的學術形態轉化為學生易於接受的教育形態 [案例1]弧度制的教學

  在弧度制的教學中,教材在介紹了弧度制的概念時,直接給出“1弧度的角” 的定義,然而學生難以接受,常常不解地問:“怎麼想到要把長度等於半徑的弧所對的圓心角叫做1弧度的角?”如果老師照本宣科,學生便更加感到乏味:“弧度,弧度,越學越糊塗。”“弧度制”這類學生在生活與社會實踐中從未碰到過的概念,直接給出它的定義,學生會很難理解。在課堂教學中,可採用如下設計的教學過程。

  1、創設故事情境

  一個生病的小男孩得知自己的體溫是“102”時,十分憂傷地獨自一個人躺在床上“等死”。而他的爸爸對此卻一無所知,他以為兒子是想休息,所以才沒有陪伴他,等他從外面打獵回來,發現兒子不見好轉時,才發現兒子沒有吃藥。一問才知道,他兒子在學校裡聽同學說一個人的體溫是“44”度時就不能活。當爸爸告訴他就像英里和千米一樣,有兩種不同的體溫測量標準,一種37度是正常,而另一種98度是正常時,他才一下子放鬆下來,委屈的淚水嘩嘩地流下來。 在生活、生產和科學研究中,一個量可以有幾種不同的計量單位***老師可以讓學生說出如長度、面積、質量等一些量的不同計量單位***,並指出對於“角”僅用“度”做單位就很不方便。因此,我們要學習角的另一種計量單位——弧度。如此引入很.自然引出或鼓勵學生猜測“角”還有沒有其他度量方式,從而開啟思維的閘門。

  2、探索角新的度量方法

  可從兩種度量實質上的一致之處開始探索:拿兩個量角器拼成一個圓,可以看出圓周被分成360份,其中每一份所對的圓心角的度數就是1度,然後提出問題“拿”圓上不同的圓弧,度量圓周時,得到的數值是否一樣? 為了探索這個問題,把學生分成若干小組,思考下列問題:

  ① 1度的角是如何規定的?

  ② 用一個圓心角所對的弧長來度量一個圓心角的大小是否可行?同一個圓心角在半徑不等的圓中所對弧長相等嗎?

  ③ 用一個圓的半徑來度量該圓一個圓心角的大小是否可行?其值會不會由於圓半徑的變化而變化?

  ④ 如何定義圓心角的大小?說明這種度量的好處。

  高中數學教學案例反思精選4篇教學反思要求學生分組討論以上問題,寫出結果,在班內交流結果,師生共同確定答案。

  這樣處理可將弧度概念與度量有機結合起來,有效化解難點,在探索中又注重課堂交流能力的培養,使學生在不斷的交流中逐漸明晰自己的思路。

  二、由重結果走向重過程

  新的課程標準不僅強調基礎知識與基本技能的獲得,更強調讓學生經歷知識 的形成過程,以及伴隨這一過程產生的積極的情感體驗和正確的價值觀。

  [案例2] 等比數列的前n項和公式的探求。

  為了求得一般的等比數列的前n項和,先用一個簡捷公式來表示。

  已知等比數列{ an}的公比為q,求這個數列的前n項和Sn。即Sn=a1+a2+a3+、、、+an 。

  ***1***知識回顧。

  類比學過的等差數列的前n項和公式,不難想到等比數列前n項和Sn也希望能用a1、an,n或q來表示。

  請同學們回答:對於等比數列,我們已經掌握了哪些知識?

  ①等比數的定義,用式子表示為:

  ②還可以用一系列整式表示:

  a2=a1q

  a3=a2q

  a4=a3q

  、、、

  an =an-1q

  、、、

  ③等比數列的通項公式:n=1.n-1 ***n≥2***. aaq

  ***2***新知探求

  聯想等差數列的前n項和推導方法,問:等比數列前n項的和是否也能用一個公式來表示?

  ***這是學生完成知識形成過程的重要一步,應留出充分的時間讓學生研究和討論。***

  要用a1、n、q來表示Sn=a1+a2+a3+、、、+an應先將a2,a3, ···,an用a1、n、q來表示。

  即:Sn=a1+a1q+a1q+、、、+a1qn-1

  注意觀察每項的結構:每項都是它前面一項的q倍,能否利用這個q倍,對Sn化簡求和?

  ***經過一番思考***對Sn兩邊分別乘以q,再與原式相減。經師生共同努力,完成推導過程.

  方法一:用“錯位相減法”推導

  方法二:用“迭加法”推導

  方法三:用“等比定理法”推導

  這樣設計推導方法加強了知識形成過程的教學,培養了學生的發散思維,既關注了學生知識與技能的理解和掌握,更關注了學生情感與態度的形成和發展。而傳統教學往往以最快的速度給出公式,然後通過例題演練學生,這樣教學結果往往使學生死背公式,而不能靈活運用公式解決問題。