一元二次方程的解法詳細解析
只含有一個未知數,並且未知數項的最高次數是2的整式方程叫做一元二次方程。標準形式:ax²+bx+c=0***a≠0***一元二次方程有4種解法,即直接開平方法、配方法、公式法、因式分解法。下面小編和你具體講解一元二次方程的四種解法例析。
>
【一元二次方程要點綜述】:
【要點綜述】:
一元二次方程和一元一次方程都是整式方程,它是初中數學的一個重點內容,也是學生今後學習數學的基礎。在沒講一元二次方程的解法之前,先說明一下它與一元一次方程區別。根據定義可知,只含有一個未知數,且未知數的最高次數是2的整式方程叫做一元二次方程,一般式為:。
一元二次方程有三個特點:***1***只含有一個未知數;***2***未知數的最高次數是2;***3***是整式方程。因此判斷一個方程是否為一元二次方程,要先看它是否為整式方程,若是,再對它進行整理,如能整理為的形式,那麼這個方程就是一元二次方程。
下面再講一元二次方程的解法。解一元二次方程的基本思想方法是通過“降次”,將它化為兩個一元一次方程。一元二次方程的基本解法有四種:1、直接開平方法;2、配方法;3、公式法;4、因式分解法。如下表:
> >
>
>
>
>
>
>
>
>
>
>
>
>
>
>
【一元二次方程要點綜述】:
【要點綜述】:
一元二次方程和一元一次方程都是整式方程,它是初中數學的一個重點內容,也是學生今後學習數學的基礎。在沒講一元二次方程的解法之前,先說明一下它與一元一次方程區別。根據定義可知,只含有一個未知數,且未知數的最高次數是2的整式方程叫做一元二次方程,一般式為:。
一元二次方程有三個特點:***1***只含有一個未知數;***2***未知數的最高次數是2;***3***是整式方程。因此判斷一個方程是否為一元二次方程,要先看它是否為整式方程,若是,再對它進行整理,如能整理為的形式,那麼這個方程就是一元二次方程。
下面再講一元二次方程的解法。解一元二次方程的基本思想方法是通過“降次”,將它化為兩個一元一次方程。一元二次方程的基本解法有四種:1、直接開平方法;2、配方法;3、公式法;4、因式分解法。如下表:
> >
【舉例解析】
例1:已知,解關於的方程。
分析:注意滿足的的值將使原方程成為哪一類方程。
解:由得:或,
當時,原方程為,即,解得.
當時,原方程為,即,
解得,.
說明:由本題可見,只有項係數不為0,且為最高次項時,方程才是一元二次方程,
才能使用一元二次方程的解法,題中對一元二次方程的描述是不完整的,應該說明最高次項係數不為0。
通常用一般形式描述的一元二次方程更為簡明,即形如的方程叫作關於的一元二次方程。
若本題不給出條件,就必須在整理後對項的字母系數分情況進行討論。
例2:用開平方法解下面的一元二次方程。
(1); (2)
(3); (4)
分析:直接開平方法就是用直接開平方求解一元二次方程的方法。用直接開平方法解形如的方程,
其解為。通過觀察不難發現第(1)、(2)兩小題中的方程顯然用直接開平方法好做;
第(3)題因方程左邊可變為完全平方式,右邊的121>0,所以此方程也可用直接開平方法解;
第(4)小題,方程左邊可利用平方差公式,然後把常數移到右邊,即可利用直接開平方法進行解答了。
解:(1)
∴(注意不要丟解)
由得,
由得,
∴原方程的解為:,
(2)
由得,
由得
∴原方程的解為:,
(3)
∴
∴
∴,
∴原方程的解為:,
(4)
∴,即
∴,
∴,
∴原方程的解為:,
> > > > > >分析:用配方法解方程,應先將常數移到方程右邊,再將二次項係數化為1,
變為的形式。第(1)題可變為,然後在方程兩邊同時加上一次項係數的一半的平方,
即:,方程左邊構成一個完全平方式,右邊是一個不小於0的常數,即:,
接下去即可利用直接開平方法解答了。第(2)題在配方時應特別注意在方程兩邊同時加上一次項係數的一半的平方。
解:(1)
二次項係數化為1,移常數項得:,
配方得:,即
直接開平方得:
∴,
∴原方程的解為:,
(2)
二次項係數化為1,移常數項得:
方程兩邊都加上一次項係數一半的平方得:
即
直接開平方得:
∴,
∴原方程的解為:,
說明:配方是一種基本的變形,解題中雖不常用,但作為一種基本方法要熟練掌握。
配方時應按下面的步驟進行:先把二次項係數化為1,並把常數項移到一邊;
再在方程兩邊同時加上一次項係數一半的平方。最後變為完全平方式利用直接開平方法即可完成解題任務。
例4:用公式法解下列方程。
(1);(2)
分析:用公式法就是指利用求根公式,使用時應先把一元二次方程化成一般形式,
然後計算判別式的值,當≥0時,把各項係數的值代入求根公式即可得到方程的根。
但要注意當<0時,方程無解。第(1)小題應先移項化為一般式,再計算出判別式的值,
判斷解的情況之後,方可確定是否可直接代入求根公式;第(2)小題為了避免分數運算的繁瑣
可變形為,求出判別式的值後,再確定是否可代入求根公式求解。
解:(1),
化為一般式:
求出判別式的值:>0
代入求根公式:,
∴,
(2)
化為一般式:
求出判別式的值:>0
∴
∴,
說明:公式法可以用於解任何一元二次方程,在找不到簡單方法時,即考慮化為一般形式後使用公式法。
但在應用時要先明確公式中字母在題中所表示的量,再求出判別式的值,解得的根要進行化簡。
例5:用分解因式法解下列方程。
(1);(2)
分析:分解因式法是把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,
讓兩個一次因式分別等於零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,
就是原方程的兩個根。第(1)題已經是一般式,可直接對左邊分解因式;
第(2)題必須先化簡變為一般式後再進行分解因式。
左邊分解成兩個因式的積得:
於是可得:,
∴,
(2)
化簡變為一般式得:
左邊分解成兩個因式的積得:
於是可得:,
∴,
說明:使用分解因式法時,方程的一邊一定要化為0,這樣才能達到降次的目的。
把方程一邊化為0,把另一邊分解因式的方法可以用於解今後遇到的各類方程。因為這是把方程降次的重要手段之一。
從上述例題來看,解一元二次方程的基本思路是向一元一次方程轉化,
轉化的方法主要為開平方法和使方程一邊為0,把方程另一邊分解因式,配方,或利用求根公式法
另外,在解一元二次方程時,要先觀察方程是否可以應用開平方、分解因式等簡單方法,找不到簡單方法時,
即考慮化為一般形式後使用公式法。
例6:選用恰當的方法解下列方程。 > > > > > > > > > > > > > > > > > > > > > > > > >【附訓練典題】 > > > > > > > > > > > > > > > > >
▸ 一元二次方程教案
最近訪問
- 一元二次方程的解法詳細解析
- 醫院辭職申請書範文3篇
- 春季養生保健有哪些實用要點
- 給同桌的一封信模板
- 包穀杆裡的蟲打一歇後語的答案
- 男士夏季護膚品推薦
- 怎樣檢視顯示器的最佳解析度
- 懷孕初期吃什麼牌的孕婦奶粉好
- 關於勤讀書的名言
- 當代名人書法作品欣賞
- 會議鼓舞人心的話
- 陳氏太極拳小架合式
- 隋朝經濟制度_隋唐時期的經濟制度是什麼
- 周公解夢夢見心上人的預兆
- 高三物理期末教學總結最新範文
- 關於穀雨的氣候特點和養生方式
- 企業鼓舞員工的一封信怎麼寫
- 一週最快速的減肥方法
- 適合高三學生看的六本勵志書籍
- 土方運輸合同範本
- 康熙字典五行屬金的字
- 康熙字典五行屬木的字
- 康熙字典五行屬水的字
- 康熙字典五行屬火的字
- 康熙字典五行屬土的字