高三數學的快速解題法介紹

  高三數學可以說是真的很令人頭疼的事,許多人都因為高三數學不好學而導致偏科,甚至導致最後沒能選擇一個好的大學,想要數學得高分,還需要快速解題的技巧。下面是小編分享的高三數學的快速解題方法,一起來看看吧。

  高三數學的快速解題方法

  熟悉步驟和解題方法

  高三數學在解題的過程,是一個思維的過程,大一一些基本的常見的問題,前人已經總結出了一些基本的解題思路和常用的解題程式,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到題的答案。

  認真做好總結

  在解過一定數量的習題之後,對所涉及到的知識,解題方法進行歸納總結,以便使解題思路更為清晰,就能達到舉一反三的效果,對於類似的習題一目瞭然,可以節約大量的解題時間。

  論證演算方法

  一共兩個層次:第一層次是適應面較寬的求解方法,如消元法、換元法、降次法、待定係數法、反證法、同一法、數學歸納法即遞推法、座標法、三角法、數形結合法、構造法、配方法等等;第二層次是適應面較窄的求解技巧,如因式分解法以及因式分解裡的“裂項法”、函式作圖的“描點法”、以及三角函式作圖的“五點法”、幾何證明裡的“截長補短法”、“補形法”、數列求和裡的“裂項相消法”等。

  高中數學數列解法方法與技巧

  數列是高中數學的重要內容,又是學習高等數學的基礎。高考對本章的考查比較全面,等差數列,等比數列的考查每年都不會遺漏。有關數列的試題經常是綜合題,經常把數列知識和指數函式、對數函式和不等式的知識綜合起來,試題也常把等差數列、等比數列,求極限和數學歸納法綜合在一起。探索性問題是高考的熱點,常在數列解答題中出現。本章中還蘊含著豐富的數學思想,在主觀題中著重考查函式與方程、轉化與化歸、分類討論等重要思想,以及配方法、換元法、待定係數法等基本數學方法。

  近幾年來,高考關於數列方面的命題主要有以下三個方面;1數列本身的有關知識,其中有等差數列與等比數列的概念、性質、通項公式及求和公式。2數列與其它知識的結合,其中有數列與函式、方程、不等式、三角、幾何的結合。3數列的應用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎題為主,解答題大都以基礎題和中檔題為主,只有個別地方用數列與幾何的綜合與函式、不等式的綜合作為最後一題難度較大。

  知識整合

  1. 在掌握等差數列、等比數列的定義、性質、通項公式、前n項和公式的基礎上,系統掌握解等差數列與等比數列綜合題的規律,深化數學思想方法在解題實踐中的指導作用,靈活地運用數列知識和方法解決數學和實際生活中的有關問題;

  2. 在解決綜合題和探索性問題實踐中加深對基礎知識、基本技能和基本數學思想方法的認識,溝通各類知識的聯絡,形成更完整的知識網路,提高分析問題和解決問題的能力,

  進一步培養學生閱讀理解和創新能力,綜合運用數學思想方法分析問題與解決問題的能力。

  3. 培養學生善於分析題意,富於聯想,以適應新的背景,新的設問方式,提高學生用函式的思想、方程的思想研究數列問題的自覺性、培養學生主動探索的精神和科學理性的思維方法.

  高中數學立體幾何解法方法與技巧

  高考立體幾何試題一般共有4道選擇、填空題3道, 解答題1道, 共計總分27分左右,考查的知識點在20個以內。 選擇填空題考核立幾中的計算型問題, 而解答題著重考查立幾中的邏輯推理型問題, 當然, 二者均應以正確的空間想象為前提。 隨著新的課程改革的進一步實施,立體幾何考題正朝著“多一點思考,少一點計算”的發展。從歷年的考題變化看, 以簡單幾何體為載體的線面位置關係的論證,角與距離的探求是常考常新的熱門話題。

  知識整合

  1.有關平行與垂直線線、線面及面面的問題,是在解決立體幾何問題的過程中,大量的、反覆遇到的,而且是以各種各樣的問題包括論證、計算角、與距離等中不可缺少的內容,因此在主體幾何的總複習中,首先應從解決“平行與垂直”的有關問題著手,通過較為基本問題,熟悉公理、定理的內容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規律--充分利用線線平行垂直、線面平行垂直、面面平行垂直相互轉化的思想,以提高邏輯思維能力和空間想象能力。

  2. 判定兩個平面平行的方法:

  1根據定義--證明兩平面沒有公共點;

  2判定定理--證明一個平面內的兩條相交直線都平行於另一個平面;

  3證明兩平面同垂直於一條直線。

  3.兩個平面平行的主要性質:

  1由定義知:“兩平行平面沒有公共點”。

  2由定義推得:“兩個平面平行,其中一個平面內的直線必平行於另一個平面。

  3兩個平面平行的性質定理:”如果兩個平行平面同時和第三個平面相交,那

  麼它們的交線平行“。

  4一條直線垂直於兩個平行平面中的一個平面,它也垂直於另一個平面。

  5夾在兩個平行平面間的平行線段相等。

  6經過平面外一點只有一個平面和已知平面平行。

  以上性質2、3、5、6在課文中雖未直接列為”性質定理“,但在解題過程中均可直接作為性質定理引用。

  解答題分步驟解決可多得分

  1. 合理安排,保持清醒。數學考試在下午,建議中午休息半小時左右,睡不著閉閉眼睛也好,儘量放鬆。然後帶齊用具,提前半小時到考場。

  2. 通覽全卷,摸透題情。剛拿到試卷,一般較緊張,不宜匆忙作答,應從頭到尾通覽全卷,儘量從卷面上獲取更多的資訊,摸透題情。這樣能提醒自己先易後難,也可防止漏做題。

  3 .解答題規範有序。一般來說,試題中容易題和中檔題佔全卷的80%以上,是考生得分的主要來源。對於解答題中的容易題和中檔題,要注意解題的規範化,關鍵步驟不能丟,如三種語言文字語言、符號語言、圖形語言的表達要規範,邏輯推理要嚴謹,計算過程要完整,注意算理演算法,應用題建模與還原過程要清晰,合理安排卷面結構……對於解答題中的難題,得滿分很困難,可以採用“分段得分”的策略,因為高考微博閱卷是“分段評分”。比如可將難題劃分為一個個子問題或一系列的步驟,先解決問題的一部分,能解決到什麼程度就解決到什麼程度,獲取一定的分數。有些題目有好幾問,前面的小問你解答不出,但後面的小問如果根據前面的結論你能夠解答出來,這時候不妨引用前面的結論先解答後面的,這樣跳步解答也可以得分。