數學學習方法研究

  數學分析是數學類各專業的最重要的一門基礎課程,是數學類各專業及一些資訊、計算機類專業碩士研究生入學考試的必考課程之一,以下是小編分享給大家的的資料,希望可以幫到你!

  一

  提高學習數學的興趣

  首先要有學習數學的興趣。兩千多年前的孔子就說過:“知之者不如好之者,好之者不如樂之者。”這裡的“好”與“樂”就是願意學、喜歡學,就是學習興趣,世界知名的偉大科學家、相對論學說的創立者愛因斯坦也說過:“在學校裡和生活中,工作的最重要動機是工作中的樂趣。”學習的樂趣是學習的主動性和積極性,我們經常看到一些同學,為了弄清一個數學概念長時間埋頭閱讀和思考;為了解答一道數學習題而廢寢忘食。這首先是因為他們對數學學習和研究感興趣,很難想象,對數學毫無興趣,見了數學題就頭痛的人能夠學好數學,要培養學習數學的興趣首先要認識學習數學的重要性,數學被稱為科學的皇后,它是學習科學知識和應用科學知識必須的工具。可以說,沒有數學,也就不可能學好其他學科;其次必須有鑽研的精神,有非學好不可的韌勁,在深入鑽研的過程中,就可以領略到數學的奧妙,體會到學習數學獲取成功的喜悅。長久下去,自然會對數學產生濃厚的興趣,並激發出學好數學的高度自覺性和積極性。用興趣推動學習,而不是用任務觀點強迫自己被動地學習數學。

  二

  知難而進,迂迴式學習

  首先要培養學習數學分析的興趣和積極性,還要不怕挫折,有勇氣面對遇到的困難,有毅力堅持繼續學習,這一點在剛開始進入大學學習數學分析時尤為重要。 中學數學和大學數學,由於理論體系的截然不同,使得同學們會在學習該課程開始階段遇到不小的麻煩,這時就一定得堅持住,能夠知難而進,繼續跟隨老師學習。 學習數學分析時要注意數學分析和高等數學要求不同的地方,否則你學習數學分析就與高等數學沒有什麼區別了;而且高等數學強調的是計算能力,數學分析強調的是分析的能力,分析的能力沒有學到,就談不上學好了數學分析。學好數學分析課程還有一個重要的原因是新生們體會不到的,數學分析的知識結構系統性和連續性很強,這些知識學得不紮實,肯定要影響後面知識的學習。同時將來考碩士,還是要考這門課程。如果大學第一年不把這門課程學好,將來可就難了。剛開始學習數學分析,會感覺很暈。對於老師所講的知識,雖然表面上能聽懂,但卻不明白知識背後的真正原因,所以總是感覺學到的東西不實在。至於做題就更差勁了,課後習題都沒幾個會做的。其實感覺暈是很正常的,而且還得要暈上幾個月才可能就會好的。所以要硬著頭皮跟著老師學了下來。雖然感覺還是不太懂,雖然做作業仍然感覺很費勁,但始終不要放棄,這種狀態是學習數學分析的一個必經之路,因此必須克服這個困難才能學好數學分析理論知識。 除了要堅持外,還要注意不要在某些問題的解決上花費過多的時間。因為數學分析理論十分嚴謹,教科書在講解初步知識時,有時會不可避免地用到一些以後才能學到的理論思想,因而在初步學習時就對著這種問題不放是十分不划算的。比如說,在“數學分析”一開始學習實數系的確界存在基本定理時,由於當時根本沒什麼基礎,所以對於“引入這個定理的目的是什麼?”這個問題怎麼想也想不通,甚至覺得這個定理沒有什麼實質的意義。但到後來學到了多元部分的數學分析,以及專業課“實變函式”時,才開始慢慢理解它的真正目的。這裡之所以要說明是實數繫有確界存在的性質,即相當於有一種連續的性質,目的就是為了後面的極限和連續做鋪墊的,因為只有在自變數能夠連續變化的時候,考慮因變數的相應變 化才有意義,進而才能研究函式的性質。但是如果沒有學到後面,只瞭解區間而不知其它一些怪異的點集時是很難想通這個問題的。 所以,在開始學習數學分析時,可以考慮採取迂迴的學習方式。先把那些一時難以想通的問題記下,轉而繼續學習後續知識,然後不時地回頭複習,在複習時由於後面知識的積累就可能會想通以前遺留的問題,進而又能促進後面知識的深刻理解。這種迂迴式的學習方法,使得溫故不但能知新,而且還能更好地知故。 但是,也並不是說在初學時就不去思考任何問題。相反,勤于思考是學好數學必備的好習慣,“數學是思維的體操”,只有堅持思考才能掌握它的理論體系和邏輯關係。因此,應該在學習時掌握尺度,既要保證有充分的思考,但同時又不能過於鑽牛角尖。

  三

  瞭解背景,理論式學習

  數學分析與中學數學明顯的一個差異就在於數學分析強調數學的基礎理論體系,而中學數學則是注重計算與解題。針對這個特點,學習數學分析就應該注重建立自己的數學理論知識框架。 要學習理論體系,首先就應該知道為什麼要建立這種理論,它的作用是什麼,這就要了解數學的歷史背景知識。比如“數學分析”在一開始就強調對-N語言的掌握,而它的產生則是由於數學史上的“第二次數學危機”引起的。眾所周知,Newton創立的微積分,雖然在其應用方面取得了巨大的成就,但微積分在那時的理論基礎是相當混亂的。Newton在求導數時先將無窮小量看成非零數作為分母,後來又將其視做零而捨去,因此這就導致了邏輯上的錯誤。為了給微積分奠定正確而堅實的基礎,大數學家威爾斯特拉森在Cauchy的基礎上提出了用-N語言的方法來推出極限和導數的概念。藉助-N語言,可以十分清晰地展示出函式取極限的過程,而且在邏輯上也非常清楚嚴謹。這樣,當了解了這些歷史背景知識之後,就覺得學習-N語言是很必要的,學起來也就自然得多了。除了瞭解背景幫助我們學習理論知識外,還要下苦功夫去學習。在接觸了這些陌生的數學理論一段時間後,可能覺得看起來已經懂了,但其實自己不一定能真正掌握,尤其是那些證明中內含的邏輯關係最容易出錯。所以在學習時,應該適當地記憶理論知識,有時還應該默寫定理,只有通過默寫才能發現自己在理論上的漏洞,才能培養出自己嚴密的理論、邏輯能力,這對以後的學習都是很有幫助的。

  四

  把握三個環節,提高學習效率

  ***1***課前預習 適當的預習是必要的,瞭解老師即將講什麼內容,相應地複習與之相關內容。如果時間不多,你可以瀏覽一下教師將要講的主要內容,獲得一個大概的印象,這可以在一定程度上幫助你在課堂上跟上教師的思路,如果時間比較充裕,除了瀏覽之外,還可以進一步細緻地閱讀部分內容,並且準備好問題,看一下自己的理解與教師講解的有什麼區別,有哪些問題需要與教師討論。如果能夠做到這些,那麼你的學習就會變得比較主動、深入,會取得比較好的效果。 ***2***認真上課 注意老師的講解方法和思路,其分析問題和解決問題的過程,記好課堂筆記,聽課是一個全身心投入——聽、記、思相結合的過程。教師在有限的課堂教學時間中,只能講思路,講重點,講難點。不要指望教師對所有知識都講透,要學會自學,在自學中培養學習能力和創造能力。所以要努力擺脫對於教師和對於課堂的完全依賴心理。當然也不是完全不要老師,不上課。老師能在課堂教學把主要思路,重點與難點交代清楚,從而使你自學起來條理清楚,有的放矢。對於教師在課堂上講的知識,最重要的是獲得整體的認識,而不拘泥於每個細節是否清楚。學生在課堂上聽課時,也應當把主要精力集中在教師的證明思路和對於難點的分析上。如果有某些細節沒有聽明白,不要影響你繼續聽其它內容。只要掌握了主要思路,即 使某些細節沒有聽清楚,也沒有關係。你自己完全能夠在這個思路的引導下將全部細節補足,最後推出結論。應當在學習的各個環節培養自己的主動精神和自學能力,擺脫對教師與課堂的過分依賴。這不僅是今天學習的需要,而且是培養創造能力的需要。 ***3***課後複習 複習不是簡單的重複,應當用自己的表達方式再現所學的知識,例如對某個定理的複習,不是再讀一遍書或課堂筆記,而是離開書本和筆記,回憶有關內容,不清楚之處再對照教材或筆記。另外,複習時的思路不應當教師講課或者教科書的翻版,一個可供參考的方法是採用倒敘式。從定理的結論倒推,為了得到定理的結論,是怎樣進行推理的,定理的條件用在何處。這樣倒置思維方式,更加接近這個定理的發現的思路,是一種創造性的思維活動。