數學選擇題蒙題技巧有哪些

  高考各科單選題答案都有一個共同的規律,既答案A、B、C、D的概率均為25%,所以不會的題蒙C只能做對四分之一的題。下面是小編為你整理關於的內容,希望大家喜歡!

  數學選擇題蒙題技巧

  1、答案有根號的,不選

  2、答案有1的,選

  3、三個答案是正的時候,在正的中選

  4、有一個是正X,一個是負X的時候,在這兩個中選

  5、題目看起來數字簡單,那麼答案選複雜的,反之亦然

  6、上一題選什麼,這一題選什麼,連續有三個相同的則不適合本條

  7、答題答得好,全靠眼睛瞟

  8、以上都不實用的時候選B

  數學選擇題蒙題技巧:中庸之道

  即數值優先選擇“中間量”選項,選項優先考慮bcd。在同一道題中優先考慮數值的“中間量”後考慮選項bcd。***如e選項對應數值為中間量時,優先從數值入手考慮***出現諸如“以上結果都不對”的選項不予考慮由提幹給定資訊入手,通過選項特徵排除錯誤選項選項基本特徵如下:

  單值與多值***例如提幹出現“偶次方、絕對值、對稱性”等結果出現多值***正值與負值***考前衝刺p12/25題根據提幹排除負值******3***有零與無零

  區間的開與閉***看極端情況能否取等號***正無窮與負無窮***通過極限考慮***

  整數與小數***分數***參見考前衝刺p13/28題質數與合數大於與小於整除與不能整除

  帶符號與不帶符號***例如根號、平方號等等***

  高考數學答題公式整理

  一、高中數學公式全集:

  常用的誘導公式有以下幾組:

  公式一:

  設α為任意角,終邊相同的角的同一三角函式的值相等:

  sin***2kπ+α***=sinα ***k∈Z***

  cos***2kπ+α***=cosα ***k∈Z***

  tan***2kπ+α***=tanα ***k∈Z***

  cot***2kπ+α***=cotα ***k∈Z***

  公式二:

  設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:

  sin***π+α***=-sinα

  cos***π+α***=-cosα

  tan***π+α***=tanα

  cot***π+α***=cotα

  公式三:

  任意角α與 -α的三角函式值之間的關係:

  sin***-α***=-sinα

  cos***-α***=cosα

  tan***-α***=-tanα

  cot***-α***=-cotα

  公式四:

  利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:

  sin***π-α***=sinα

  cos***π-α***=-cosα

  tan***π-α***=-tanα

  cot***π-α***=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:

  sin***2π-α***=-sinα

  cos***2π-α***=cosα

  tan***2π-α***=-tanα

  cot***2π-α***=-cotα

  公式六:

  π/2±α及3π/2±α與α的三角函式值之間的關係:

  sin***π/2+α***=cosα

  cos***π/2+α***=-sinα

  tan***π/2+α***=-cotα

  cot***π/2+α***=-tanα

  sin***π/2-α***=cosα

  cos***π/2-α***=sinα

  tan***π/2-α***=cotα

  cot***π/2-α***=tanα

  sin***3π/2+α***=-cosα

  cos***3π/2+α***=sinα

  tan***3π/2+α***=-cotα

  cot***3π/2+α***=-tanα

  sin***3π/2-α***=-cosα

  cos***3π/2-α***=-sinα

  tan***3π/2-α***=cotα

  cot***3π/2-α***=tanα

  ***以上k∈Z***

  注意:在做題時,將a看成銳角來做會比較好做。

  誘導公式記憶口訣

  ※規律總結※

  上面這些誘導公式可以概括為:

  對於π/2*k ±α***k∈Z***的三角函式值,

  ①當k是偶數時,得到α的同名函式值,即函式名不改變;

  ②當k是奇數時,得到α相應的餘函式值,即sin→cos;cos→sin;tan→cot,cot→tan.

  ***奇變偶不變***

  然後在前面加上把α看成銳角時原函式值的符號。

  ***符號看象限***

  例如:

  sin***2π-α***=sin***4·π/2-α***,k=4為偶數,所以取sinα。

  當α是銳角時,2π-α∈***270°,360°***,sin***2π-α***<0,符號為“-”。

  所以sin***2π-α***=-sinα

  上述的記憶口訣是:

  奇變偶不變,符號看象限。

  公式右邊的符號為把α視為銳角時,角k·360°+α***k∈Z***,-α、180°±α,360°-α

  所在象限的原三角函式值的符號可記憶

  水平誘導名不變;符號看象限。

  #

  各種三角函式在四個象限的符號如何判斷,也可以記住口訣“一全正;二正弦***餘割***;三兩切;四餘弦***正割***”.

  這十二字口訣的意思就是說:

  第一象限內任何一個角的四種三角函式值都是“+”;

  第二象限內只有正弦是“+”,其餘全部是“-”;

  第三象限內切函式是“+”,弦函式是“-”;

  第四象限內只有餘弦是“+”,其餘全部是“-”.

  上述記憶口訣,一全正,二正弦,三內切,四餘弦

  #

  還有一種按照函式型別分象限定正負:

  函式型別 第一象限 第二象限 第三象限 第四象限

  正弦 ...........+............+............—............—........

  餘弦 ...........+............—............—............+........

  正切 ...........+............—............+............—........

  餘切 ...........+............—............+............—........

  同角三角函式基本關係

  同角三角函式的基本關係式

  倒數關係:

  tanα ·cotα=1

  sinα ·cscα=1

  cosα ·secα=1

  商的關係:

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方關係:

  sin^2***α***+cos^2***α***=1

  1+tan^2***α***=sec^2***α***

  1+cot^2***α***=csc^2***α***

  同角三角函式關係六角形記憶法

  六角形記憶法:***參看圖片或參考資料連結***

  構造以"上弦、中切、下割;左正、右餘、中間1"的正六邊形為模型。

  ***1***倒數關係:對角線上兩個函式互為倒數;

  ***2***商數關係:六邊形任意一頂點上的函式值等於與它相鄰的兩個頂點上函式值的乘積。

  ***主要是兩條虛線兩端的三角函式值的乘積***。由此,可得商數關係式。

  ***3***平方關係:在帶有陰影線的三角形中,上面兩個頂點上的三角函式值的平方和等於下面頂點上的三角函式值的平方。