有關圓周率的歷史資料
圓周率***Pi***是圓的周長與直徑的比值,一般用希臘字母π表示,是一個在數學及物理學中普遍存在的數學常數。關於你又知道多少呢?下面是小編為大家整理的,希望對大家有幫助。
之歷史發展
實驗時期
一塊 古巴比倫石匾***約產於公元前1900年至1600年***清楚地記載了圓周率 = 25/8 = 3.125。 同一時期的 古埃及文物,萊因德數學紙草書***Rhind Mathematical Papyrus***也表明圓周率等於分數16/9的平方,約等於3.1605。 埃及人似乎在更早的時候就知道圓周率了。 英國作家 John Taylor ***1781–1864*** 在其名著《金字塔》***《The Great Pyramid: Why was it built, and who built it?》***中指出,造於公元前2500年左右的 胡夫金字塔和圓周率有關。例如,金字塔的周長和高度之比等於圓周率的兩倍,正好等於圓的周長和半徑之比。公元前800至600年成文的 古印度宗教鉅著《百道梵書》***Satapatha Brahmana***顯示了圓周率等於分數339/108,約等於3.139。
幾何法時期
古希臘作為古代幾何王國對圓周率的貢獻尤為突出。古希臘大數學家 阿基米德***公元前287–212 年*** 開創了人類歷史上通過理論計算圓周率近似值的先河。阿基米德從 單位圓出發,先用內接正六邊形求出圓周率的 下界為3,再用外接正六邊形並藉助 勾股定理求出圓周率的 上界小於4。接著,他對內接正六邊形和外接正六邊形的邊數分別加倍,將它們分別變成內接正12邊形和外接正12邊形,再借助勾股定理改進圓周率的下界和上界。他逐步對內接正多邊形和外接正多邊形的邊數加倍,直到內接正96邊形和外接正96邊形為止。最後,他求出圓周率的下界和上界分別為223/71 和22/7, 並取它們的平均值3.141851 為圓周率的近似值。阿基米德用到了 迭代演算法和兩側數值逼近的概念,稱得上是“ 計算數學”的鼻祖。
中國古算書《 周髀算經》***約公元前2世紀***的中有“徑一而週三”的記載,意即取 。漢朝時, 張衡得出 ,即 ***約為3.162***。這個值不太準確,但它簡單易理解。
公元263年,中國數學家 劉徽用“ 割圓術”計算圓周率,他先從圓內接正六邊形,逐次分割一直算到圓內接正192邊形。他說“割之彌細,所失彌少,割之又割,以至於不可割,則與圓周合體而無所失矣。”,包含了求 極限的思想。劉徽給出π=3.141024的圓周率近似值,劉徽在得圓周率=3.14之後,將這個數值和晉武庫中漢 王莽時代製造的銅製體積 度量衡標準 嘉量斛的直徑和容積檢驗,發現3.14這個數值還是偏小。於是繼續割圓到1536邊形,求出3072邊形的面積,得到令自己滿意的圓周率 。
公元480年左右,南北朝時期的數學家 祖沖之進一步得出精確到小數點後7位的結果,給出不足近似值3.1415926和過剩近似值3.1415927,還得到兩個近似分數值,密率 和約率 。密率是個很好的分數近似值,要取到 才能得出比 略準確的近似。***參見 丟番圖逼近***
在之後的800年裡祖沖之計算出的π值都是最準確的。其中的密率在西方直到1573年才由德國人奧托***Valentinus Otho***得到,1625年發表於荷蘭工程師安託尼斯***Metius***的著作中,歐洲稱之為Metius' number。
約在公元530年,印度數學大師 阿耶波多算出圓周率約為 。 婆羅摩笈多采用另一套方法,推論出圓周率等於10的 算術平方根。
阿拉伯數學家 卡西在15世紀初求得圓周率17位精確小數值,打破祖沖之保持近千年的紀錄。德國數學家 魯道夫·範·科伊倫***Ludolph van Ceulen***於1596年將π值算到20位小數值,後投入畢生精力,於1610年算到小數後35位數,該數值被用他的名字稱為魯道夫數。
分析法時期
這一時期人們開始利用 無窮級數或無窮連乘積求π,擺脫可割圓術的繁複計算。無窮乘積式、無窮 連分數、無窮級數等各種π值表示式紛紛出現,使得π值計算精度迅速增加。
第一個快速演算法由英國數學家梅欽***John Machin***提出,1706年梅欽計算π值突破100位小數大關,他利用瞭如下公式:
其中arctan x可由 泰勒級數算出。類似方法稱為“梅欽類公式”。
斯洛維尼亞數學家Jurij Vega於17***得出π的小數點後首140位,其中只有137位是正確的。這個世界紀錄維持了五十年。他利用了梅欽於1706年提出的數式。
到1948年英國的弗格森***D. F. Ferguson***和美國的倫奇共同發表了π的808位小數值,成為人工計算圓周率值的最高紀錄。
計算機時代
電子計算機的出現使π值計算有了突飛猛進的發展。1949年,美國製造的世上首部電腦- ENIAC***Electronic
Numerical Integrator And Computer***在 阿伯丁試驗場啟用了。次年,裡特韋斯納、馮紐曼和梅卓普利斯利用這部電腦,計算出π的2037個小數位。這部電腦只用了70小時就完成了這項工作,扣除插入 打孔卡所花的時間,等於平均兩分鐘算出一位數。五年後,IBM NORC***海軍兵器研究計算機***只用了13分鐘,就算出π的3089個小數位。科技不斷進步,電腦的運算速度也越來越快,在60年代至70年代,隨著美、英、法的電腦科學家不斷地進行電腦上的競爭,π的值也越來越精確。在1973年,Jean Guilloud和Martin Bouyer以電腦CDC 7600發現了π的第一百萬個小數位。
在1976年,新的突破出現了。薩拉明***Eugene Salamin***發表了一條新的公式,那是一條二次收斂算則,也就是說每經過一次計算, 有效數字就會倍增。高斯以前也發現了一條類似的公式,但十分複雜,在那沒有電腦的時代是不可行的。這演算法被稱為布倫特-薩拉明***或薩拉明-布倫特***演演算法,亦稱高斯-勒讓德演演算法。
*** 美國哥倫比亞大學研?a href='//' target='_blank'>咳嗽庇每死?2型***Cray-2***和IBM-3090/VF型巨型電子計算機計算出π值小數點後4.8億位數,後又繼續算到小數點後10.1億位數。2010年1月7日——法國工程師 法布里斯·貝拉將圓周率算到小數點後27000億位。2010年8月30日——日本計算機奇才近藤茂利用家用計算機和 雲端計算相結合,計算出圓周率到小數點後5萬億位。
2011年10月16日,日本 長野縣 飯田市公司職員近藤茂利用家中電腦將圓周率計算到小數點後10萬億位,重新整理了2010年8月由他自己創下的5萬億位 吉尼斯世界紀錄。56歲的近藤茂使用的是自己組裝的計算機,從10月起開始計算,花費約一年時間重新整理了紀錄。
之特性
把圓周率的數值算得這麼精確,實際意義並不大。現代科技領域使用的圓周率值,有十幾位已經足夠了。如果以39位精度的圓周率值,來計算宇宙的大小,誤差還不到一個 原子的體積。以前的人計算圓周率,是要探究圓周率是否 迴圈小數。自從1761年蘭伯特證明了圓周率是 無理數,1882年林德曼證明了圓周率是 超越數後,圓周率的神祕面紗就被揭開了。
π在許多數學領域都有非常重要的作用。