七年級數學下期末考試卷人教版

  運氣旺,金榜題名響噹噹!預祝:七年級數學期末考試時能超水平發揮。以下是小編為大家整理的,希望你們喜歡。

  七年級數學下期末考試題

  一、選擇題***共8小題,每小題3分,滿分24分***

  1.在數軸上表示不等式2x﹣4>0的解集,正確的是***  ***

  A. B. C. D.

  2.如果 是二元一次方程2x﹣y=3的解,則m=***  ***

  A.0 B.﹣1 C.2 D.3

  3.若a>b,則下列不等式中,不成立的是***  ***

  A.a+5>b+5 B.a﹣5>b﹣5 C.5a>5b D.﹣5a>﹣5b

  4.下列長度的各組線段首尾相接能構成三角形的是***  ***

  A.3cm、5cm、8cm B.3cm、5cm、6cm C.3cm、3cm、6cm D.3cm、5cm、10cm

  5.商店出售下列形狀的地磚:

  ①長方形;②正方形;③正五邊形;④正六邊形.

  若只選購其中某一種地磚鑲嵌地面,可供選擇的地磚共有***  ***

  A.1種 B.2種 C.3種 D.4種

  6.如圖,將矩形ABCD沿AE摺疊,若∠BAD′=30°,則∠AED′等於***  ***

  A.30° B.45° C.60° D.75°

  7.在下列條件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能確定△ABC是直角三角形的條件有***  ***

  A.1個 B.2個 C.3個 D.4個

  8.已知關於x的不等式組 無解,則a的取值範圍是***  ***

  A.a≤2 B.a≥2 C.a<2 D.a>2

  二、填空題***共7小題,每小題3分,滿分21分***

  9.若 是方程x﹣ay=1的解,則a=      .

  10.不等式3x﹣9<0的最大整數解是      .

  11.列不等式表示:“2x與1的和不大於零”:      .

  12.將方程2x+y=6寫成用含x的代數式表示y,則y=      .

  13.等腰三角形的兩邊長分別為9cm和4cm,則它的周長為      .

  14.一個三角形的三邊長分別是3,1﹣2m,8,則m的取值範圍是      .

  15.如圖所示,在△ABC中,DE是AC的中垂線,AE=3cm,△ABD的周長為13cm,則△ABC的周長是      cm.

  三、解答題***共9小題,滿分75分***

  16.***1***解方程: ﹣ =1;

  ***2***解方程組: .

  17.解不等式組,並在數軸上表示它的解集.

  .

  18.x為何值時,代數式﹣ 的值比代數式 ﹣3的值大3.

  19.如圖,已知△ABC中,AD平分∠BAC交BC於D,AE⊥BC於E,若∠ADE=80°,∠EAC=20°,求∠B的度數.

  20.如圖,在△ABC中,點D是BC邊上的一點,∠B=50°,∠BAD=30°,將△ABD沿AD摺疊得到△AED,AE與BC交於點F.

  ***1***填空:∠AFC=      度;

  ***2***求∠EDF的度數.

  21.在各個內角都相等的多邊形中,一個內角是與它相鄰的一個外角的3倍,求這個多邊形的每一個外角的度數及這個多邊形的邊數.

  22.***1***分析圖①,②,④中陰影部分的分佈規律,按此規律,在圖③中畫出其中的陰影部分;

  ***2***在4×4的正方形網格中,請你用兩種不同方法,分別在圖①、圖②中再將兩個空白的小正方形塗黑,使每個圖形中的塗黑部分連同整個正方形網格成為軸對稱圖形.

  23.如圖,在所給網格圖***每小格均為邊長是1的正方形***中完成下列各題:***用直尺畫圖***

  ***1***畫出格點△ABC***頂點均在格點上***關於直線DE對稱的△A1B1C1;

  ***2***在DE上畫出點P,使PB1+PC最小.

  24.某商場準備進一批兩種不同型號的衣服,已知購進A種型號衣服9件,B種型號衣服10件,則共需1810元;若購進A種型號衣服12件,B種型號衣服8件,共需1880元;已知銷售一件A型號衣服可獲利18元,銷售一件B型號衣服可獲利30元,要使在這次銷售中獲利不少於699元,且A型號衣服不多於28件.

  ***1***求A、B型號衣服進價各是多少元?

  ***2***若已知購進A型號衣服是B型號衣服的2倍還多4件,則商店在這次進貨中可有幾種方案並簡述購貨方案.

  參考答案

  一、選擇題***共8小題,每小題3分,滿分24分***

  1.在數軸上表示不等式2x﹣4>0的解集,正確的是***  ***

  A. B. C. D.

  【考點】解一元一次不等式;在數軸上表示不等式的解集.

  【分析】將不等式的解集在數軸上表示出來就可判定答案了.

  【解答】解:不等式的解集為:x>2,

  故選A

  2.如果 是二元一次方程2x﹣y=3的解,則m=***  ***

  A.0 B.﹣1 C.2 D.3

  【考點】二元一次方程的解.

  【分析】本題將 代入二元一次方程2x﹣y=3,解出即可.

  【解答】解:∵ 是二元一次方程2x﹣y=3的解,

  ∴2﹣m=3,

  解得m=﹣1.

  故選B.

  3.若a>b,則下列不等式中,不成立的是***  ***

  A.a+5>b+5 B.a﹣5>b﹣5 C.5a>5b D.﹣5a>﹣5b

  【考點】不等式的性質.

  【分析】根據不等式的性質1,可判斷A、B,根據不等式的性質2,可判斷C,根據不等式的性質3,可判斷D.

  【解答】解:A、B、不等式的兩邊都加或都減同一個整式,不等號的方向不變,故A、B正確;

  C、不等式的兩邊都乘以同一個正數不等號的方向不變,故C正確;

  D、不等式的兩邊都乘以同一個負數不等號的方向改變,故D錯誤;

  故選:D.

  4.下列長度的各組線段首尾相接能構成三角形的是***  ***

  A.3cm、5cm、8cm B.3cm、5cm、6cm C.3cm、3cm、6cm D.3cm、5cm、10cm

  【考點】三角形三邊關係.

  【分析】根據在三角形中任意兩邊之和大於第三邊,任意兩邊之差小於第三邊.即可求解.

  【解答】解:根據三角形的三邊關係,得:

  A、3+5=8,排除;

  B、3+5>6,正確;

  C、3+3=6,排除;

  D、3+5<10,排除.

  故選B.

  5.商店出售下列形狀的地磚:

  ①長方形;②正方形;③正五邊形;④正六邊形.

  若只選購其中某一種地磚鑲嵌地面,可供選擇的地磚共有***  ***

  A.1種 B.2種 C.3種 D.4種

  【考點】平面鑲嵌***密鋪***.

  【分析】幾何圖形鑲嵌成平面的關鍵是:圍繞一點拼在一起的多邊形的內角加在一起恰好組成一個周角.

  【解答】解:①長方形的每個內角是90°,4個能組成鑲嵌;

  ②正方形的每個內角是90°,4個能組成鑲嵌;

  ③正五邊形每個內角是180°﹣360°÷5=108°,不能整除360°,不能鑲嵌;

  ④正六邊形的每個內角是120°,能整除360°,3個能組成鑲嵌;

  故若只選購其中某一種地磚鑲嵌地面,可供選擇的地磚有①②④.

  故選C.

  6.如圖,將矩形ABCD沿AE摺疊,若∠BAD′=30°,則∠AED′等於***  ***

  A.30° B.45° C.60° D.75°

  【考點】矩形的性質;翻折變換***摺疊問題***.

  【分析】根據摺疊的性質求∠EAD′,再在Rt△EAD′中求∠AED′.

  【解答】解:根據題意得:∠DAE=∠EAD′,∠D=∠D′=90°.

  ∵∠BAD′=30°,

  ∴∠EAD′= ***90°﹣30°***=30°.

  ∴∠AED′=90°﹣30°=60°.

  故選C.

  7.在下列條件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能確定△ABC是直角三角形的條件有***  ***

  A.1個 B.2個 C.3個 D.4個

  【考點】勾股定理的逆定理;三角形內角和定理.

  【分析】根據直角三角形的判定方法對各個選項進行分析,從而得到答案.

  【解答】解:①因為∠A+∠B=∠C,則2∠C=180°,∠C=90°,所以△ABC是直角三角形;

  ②因為∠A:∠B:∠C=1:2:3,設∠A=x,則x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形;

  ③因為∠A=90°﹣∠B,所以∠A+∠B=90°,則∠C=180°﹣90°=90°,所以△ABC是直角三角形;

  ④因為∠A=∠B=∠C,所以三角形為等邊三角形.

  所以能確定△ABC是直角三角形的有①②③共3個.