例談問題設計的有效性數學論文
在數學教學中我們常會碰到一些有規律型問題,教師應該積極創設問題情景,引導學生進行發散式的探究學習,指導學生在獨立思考的基礎上,充分運用歸納、類比、聯想等方法,特別應提倡數學猜想讓學生從一定依據出發,利用非邏輯手段,直接獲得猜想性結論,從而使學生體驗到數學探究與創造的樂趣。今天小編要與大家分享的是:例談問題設計的有效性相關數學論文。具體內容如下,歡迎閱讀:
例談問題設計的有效性
探究性教學是在教師指導下,學生運用探究的方法進行學習,主動地獲取知識,培養科學精神,發展能力的實踐活動.隨著課程改革的不斷深入,探究性教學被廣大教師所接受,並廣泛的運用到教學之中.本人結合教學中的實際,就如何進行問題設計進行有效探究談談自己的認識.
一 、創設鋪墊型問題情景進行有效探究
創設鋪墊型問題情景可為學生的聯想思維提供有效的啟發,學生往往從原問題出發,通過由淺入深,由此及彼等不同方式,不同層次的聯想,變化發展出不同的新問題,從而為不同的學生提供廣闊的思維空間,這對培養學生合情的思維和推理能力有重要作用.例如,線上段有關問題教學時,我作了如下創設鋪墊型問題情景:
1.一條直線上有兩個點,A、B,則有幾條線段?請用字母表示.
2.一條直線上有三個點,A、B、C,則有幾條線段?請用字母表示.
3.一條直線上有四個點,A、B、C、D,則有幾條線段?請用字母表示.
4.乘火車從A站出發,沿途經過3個車站方可到達B站,那麼在A、B兩站之間有多少種票價?要安排多少種不同的車票?
5.一條直線上有n個點,A、B,則有多少條線段?***請用含字母n的代數式表示***
學生在教師的引導下動手實踐,自主探究,層層落實,找出規律,獲取知識,滿足了學生創造的要求,使課堂變的生氣盎然.
二、創設規律型問題情景進行有效探究
在數學教學中我們常會碰到一些有規律型問題,教師應該積極創設問題情景,引導學生進行發散式的探究學習,指導學生在獨立思考的基礎上,充分運用歸納、類比、聯想等方法,特別應提倡數學猜想讓學生從一定依據出發,利用非邏輯手段,直接獲得猜想性結論,從而使學生體驗到數學探究與創造的樂趣.
例如,在學習有理數乘方運算時,我出了以下兩個問題讓學生探究:
1.看過電視劇《西遊記》的同學,一定會喜歡孫悟空的金箍棒,能隨意伸縮,假設它最短時只有1釐米,第一次變化成3釐米,第二次變化成9釐米,第三次變化成27釐米……照此規律變化下去,到第幾次變化後才能得到243釐米呢?
2.觀察下列算式:31=3,32=9,33=27,34=81,35=243……用你發現的規律寫出32005的末位數字是多少?
學生通過觀察,分析,比較,歸納,類別等方法獲得數學猜想,逐漸找到正確的結論.
三、創設遊戲型問題情景進行有效探究
針對學生的心理特點,在課堂上根據一定需要適當的以數學遊戲,數學實驗的方法來創設問題情景,引導學生進行發散式的探究學習,這樣讓學生動手動腦,積極的參與到學習中來,既激發了學生學習數學的興趣,又培養了他們的創新能力,滿足了他們的求知慾.
例如,在學習有理數運算時,我出了這樣一道題:中央電視臺每一期“開心辭典”欄目都有一個“二十四點”的趣味題,現在我給1—13之間的自然數,你可以從中任取四個,將這四個數***四個數只能用一次***進行“+”、 “-”、“×、
“÷”運算,可以加括號,使其結果為24,學了有理數運算,你會用此方法解下列各題嗎?
1、 現有四個有理數-9、-6、2、7,你能用三種不同的方法得24嗎?
2、若給你3、-5、7、-13,還能湊出24?
學生通過自主探究,合作交流,最後得出正確的結論.這樣的問題情景既可提高學生運算能力又可培養學生思維的敏捷性,對培養學生髮散思維能力和樹立有效探究意識是有幫助的.
四、創設一題多解情景進行有效探究
對於需要探究的問題,同樣是開放性問題,其合理性、發散性、深刻性又不盡相同,不同的問題設計同樣給學生帶來不同的體驗.
如:對於“不在同一直線上的三點確定一個圓”性質的教學.通常有這樣幾種設計方案.
方案一:學生跟著老師按步驟畫,***1***畫不在同一直線上三點,***2***連線任意兩點的線段,得三角形,***3***畫出三邊的垂直平分線,交於一點,然後提出問題:為什麼這三線交於一點.解決後總結得出:不在同一直線上三點確定一個圓.然後讓學生思考:在同一直線上三點能否確定一個圓?然後教師講解;
方案二:直接給出作法和圖形***如下表***,然後提出問題:他作的圓符合要求嗎?讓學生討論、交流得出結論“不在同一直線上三點確定一個圓”.
方案三:教師給出已知三點的位置,讓學生嘗試畫圖,畫出圖形後讓學生討論、交流得出結論“不在同一直線上三點確定一個圓”.然後引導學生說明不在同一直線上三點不能確定一個圓
方案四:教師提出如下問題進行引導.
方案一學生學得很紮實,學生通過模仿學會了畫三角形的外接圓,但學得不靈活,許多學生會知其然而不知所以然,導致的結果是學生會做題,但不太會思考,更不會創造.方案二學生在他人已作好圖的基礎上進行思考,得出結論,學會畫圖.但學生由於沒有動手實踐,體會不深刻,許多學生會學得既不紮實,又缺乏剛造.方案三與方案一、二相比較雖然自主性更強,通過自己的分析、比較、思考,嘗試畫出了圖形,但由於教師給出了三點的位置,在一定程度上說束縛了學生的思維空間,在教師的控制下課堂的程序按照老師預定的設計順利地進行.方案四實際上是一次開放的實驗探究活動,由於教師在學生的實驗探究過程中.設計了一系列的問題.這些問題極具層次性.又不乏開放性,使得教師的教學活動既不流於形式.生動活潑,又不乏數學智慧.其中問題1、2具有淺層次性.面向全體學生,使基礎較差的學生也敢於嘗試,而且也為問題3的探究提供了思路.
對於問題***2***因為教師沒有限定點
A、B、C的位置.問題的給出更加開放更具挑戰性.給學生留下—了廣闊的探索、思維空間,學生在畫圖的過程中既發現了A、B、C三點位置的兩種可能:A、B、C不在同一直線上和在同一直線上,又在畫圖時發現有的學生畫出了AB、BC、AC三邊的垂直平分線,也有的學生畫出了其中的兩條垂直平分線,但實際上交點只有一個,通過比較、分析、討論又可得出三角形外接圓的唯一性,讓學生在解決問題的過程中享受到了發現的快樂,成功的喜悅.三角形外接圓的唯一性問題本來是個較難理解的問題.但通過學生的畫圖、觀察、比較、分析,問題的解決卻順理成章,水到渠成.
對於第四種方案,由於教師問題設計了一系列有層次、合理的開放性問題.學生在畫圖過程中,自然而然地想到了分類思想,想到了三點的位置可能在同一 直線上,也可能不在同一直線上,順理成章地解決了許多教師迴避的一個難題,也讓學生真正地理解了“不在同一直線上”這個條件的重要性.
總之,創設問題情景有利於學生有效探究性學習,使每個學生都得到充分發展,提高了他們思維水平,使原來抽象的數學知識變的生動形象,饒有興趣.