電氣類科技論文

  電氣是電能的生產、傳輸、分配、使用和電工裝備製造等學科或工程領域的統稱。下面小編給大家分享一些,大家快來跟小編一起欣賞吧。

  篇一

  電氣系統自動化科技的研究及革新

  摘 要:本文結合自己的工作現實經驗,針對全控型電力電子開關、變換器電路、交流調速控制、通用變頻器、微控制器、積體電路及工業控制計算機的發展幾方面論述了電氣自動化在電力體系中的運用。

  關鍵詞:電氣自動化;科技;設計思想;將來發展

  中圖分類號:A715 文獻標識碼:A 文章編號:

  1 前言

  文章經過論述電氣綜合自動化體系的效能,講述了當下電氣自動化掌控體系的規劃理念***以發電廠為例子***,展望了將來電氣自動化掌控體系的發展態勢。裝置智慧化水準的提升促使對現場裝置情況的精確掌控變為可能,通訊科技的發展則為大容量的資料傳輸提供了平臺。在工業自動化領域,基於Pc的控制系統以其靈活性和易於整合的特點正在被更多的採納。

  2 電氣自動化控制系統的設計理念

  2.1集中監控方式

  這種監控辦法優勢是運營維護比較便捷,掌控站的防護準求不高,系統規劃比較簡單。但是因為集中式的主要特徵是將系統的各個功能集中到一個處理器進行處理,處理器的任務相當繁重,處理速度受到影響。由於電氣裝置全部進入監控,伴隨著監控物件的大量增加隨之而來的是主機冗餘的下降、電纜數量增加,投資加大,長距離電纜引入的干擾也可能影響系統的可靠性。同時,?隔離刀閘的操作閉鎖和斷路器的聯鎖採用硬接線,由於隔離刀閘的輔助接點經常不到位,造成裝置無法操作。這種接線的二次接線複雜,查線不方便,大大增加了維護量,還存在由於查線或傳動過程中由於接線複雜而造成誤操作的可能性。

  2.2遠端監控方式

  遠端監控方式具有節約大量電纜、節省安裝費用、節約材料、可靠性高、組態靈活等優點。由於各種現場匯流排***如Lonworks匯流排,CAN匯流排等***的通訊速度不是很高,而電廠電氣部分通訊量相對又比較大,所有這種方式適合於小系統監控,而不適應於全廠的電氣自動化系統的構建。

  2.3現場匯流排監控方式

  目前,對於乙太網***Ethernet***、現場匯流排等計算機網路科技已經普遍應用於變電站綜合自動化系統中,且已經積累了豐富的執行經驗,智慧化電氣裝置也有了較快的發展,這些都為網路控制系統應用於發電廠電氣系統奠定了良好的基礎。現場匯流排監控方式使系統設計更加有針對性,對於不同的間隔可以有不同的功能,這樣可以根據間隔的情況進行設計。採用這種監控方式除了具有遠端監控方式的全部優點外,還可以減少大量的隔離裝置、端子櫃、I/0卡件、模擬量變送器等,而且智慧裝置就地安裝,與監控系統通過通訊線連線,可以節省大量控制電纜,節約很多投資和安裝維護工作量,從而降低成本。另外,各裝置的功能相對獨立,裝置之間僅通過網路連線,網路組態靈活,使整個系統的可靠性大大提高,任一裝置故障僅影響相應的元件,不會導致系統癱瘓。因此現場匯流排監控方式是今後發電廠計算機監控系統的發展方向。

  3 探討電氣自動化控制系統的發展趨勢

  3.1 OPC***OIJEforProcessControl***科技

  OPC***OIJEforProcessControl***科技的出現,IEC61131的頒佈,以及Microsoft的Windows平臺的廣泛應用,使得未來的電氣科技的結合,計算機日益發揮著不可替代的作用。IEC61131已成為了一個國際化的標準,正被各大控制系統廠商廣泛採納。Pc客戶機/伺服器體系結構、乙太網和Internet科技引發了電氣自動化的一次又一次革命。正是市場的需求驅動著自動化和IT平臺的融和,電子商務的普及將加速著這一過程。Internet/Intranet科技和多媒體科技在自動化領域有著廣泛的應用前景。企業的管理層利用標準的瀏覽器可以存取企業的財務、人事等管理資料,也可以對當前生產過程的動態畫面進行監控,在第一時間瞭解最全面和準確的生產資訊。虛擬現實科技和視訊處理科技的應用,將對未來的自動化產品,如人機介面和裝置維護系統的設計產生直接的影響。相對應的軟體結構、通訊能力及易於使用和統一的組態環境變得重要了。軟體的重要性在不斷提高。這種趨勢正從單一的裝置轉向整合的系統。

  3.2 變換器電路從低頻向高頻方向發展

  隨著電力電子器件的更新,由它組成的變換器電路也必然要換代。應用普通閘流體時,直流傳功的變換器主要是相控整流,而交流變頻船動則是交一直一交變頻器。當電力電子器件進入第二代後,更多是採用PWM 變換器了。採用PWM方式後,提高了功率因數,減少了高次諧波對電岡的影響,解決了電動機在低頻區的轉矩脈動問題。

  但是PWM 逆變器中的電壓、電流的諧波分量產生的轉矩脈動作用在定轉子上,使電機繞組產生振動而發出噪聲。為了解決這個問題,一種方法是提高開關頻率,使之超過人耳能感受的範圍,但是電力電子器件在高電 壓大電流的情況下導通或關斷,開關損耗很大。開關損耗的存在限制了逆變器工作頻率的提高。 1986 年美國威斯康星大學 Divan 教授提出諧振式直流環逆變器。傳統的逆變器是掛在穩定的直流母線上,電力電子器件是在高電壓下進行轉換的‘硬開關’,其開關損耗較大,限制了開關在頻率上的提高。而諧奪式直流環逆變器是把逆變器掛在高頻振盪

  過零的諧振路上,使電力電子器件在零電壓或零電流下轉換,即工作在所謂的‘軟開關’狀態下,從而使開關損耗降低到零。這樣,可以使逆器尺寸減少,降低成本,還可能在較高功率上使逆變器整合化。因此,諧振式直流逆變器電路極有發展前途。

  3.3 交流調速控制理論日漸成熟

  1971年,德國學者F.Blaschke發表論文闡明瞭交流電機磁場定向即向量控制的原理,為交流傳動高效能控制奠定了理論基礎。向量控制的基本思想是仿照直流電動機的控制方式,把定子電流的磁場分量和轉矩分量解耦開來,分別加以控制。這種解耦,實際上是把非同步電動機的物理模型設法等效地變換成類似於直流電動機的模式,這種等效變換是藉助於座標變換完成的。它需要檢測轉子磁鏈的方向,且其效能易受轉子引數,特別是轉子迴路時間常數的影響。加上向量旋轉變換的複雜性,使得實際的控制效果難於達到分析的結果。

  1985 年德國魯爾大學的 Depenbrock 教授首次提出了直接轉矩控制的理論,接著 1987年又把它推 廣到弱磁調速範圍。大致來說,直接轉矩控制,用空間向量的分析方法,直接在定子座標系下分析計算與控制電流電動機的轉矩。採用定子磁場定向,藉助於離散的兩點式調節***Band 一 Band 控制***產生 PWM 訊號,直接對逆變器的開關狀態進行最佳控制,以獲得轉矩的高動態效能。它省掉了複雜的向量變換與電動數學模型的簡化處理,大大減少了向量控制中控制性能引數易受引數變化影響的問題,沒有通常的 PWM 訊號發生器,其控制思想新穎,控制結構簡單,控制手段直接,訊號處物理概念明確,轉矩響應迅速,限制在一拍之內,且無超調,是一種具有高靜動態效能的新型交流調速方法。

  結束語

  電氣系統自動化科技的研究對於水利的進步有著非常重要的意義,只有不斷的革新電氣系統才能夠更好的為水利建設服務。

  參考文獻:

  [1]賀家李、沈從炬,電力系統繼電保護原理,北京:中國電力出版社,1994.

  [2]範輝、陸學謙,電氣監控系統納入DCS的幾點體會,電力自動化裝置,2001,21***3***:52-54.

  [3]薛葵,發電廠電氣監控系統,電力系統裝備,2002***1***:72-73.

點選下頁還有更多>>>