高中數學應該注意的學習方法
在高中的數學學習中,你知道你應該注意的學習方法有哪些嗎?下面是小編整理的以供大家閱讀。
1.用心感受數學,欣賞數學,掌握數學思想。有位數學家曾說過:數學是用最小的空間集中了最大的理想。
2.要重視數學概念的理解。高一數學與初中數學最大的區別是概念多並且較抽象,學起來“味道”同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義並掌握各種等價的表達方式。例如,為什麼函式y=f***x***與y=f-1***x***的圖象關於直線y=x對稱,而y=f***x***與x=f-1***y***卻有相同的圖象;又如,為什麼當f***x-1***=f***1-x***時,函式y=f***x***的圖象關於y軸對稱,而y=f***x-1***與y=f***1-x***的圖象卻關於直線x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關係的區別,兩者很容易混淆。
3.對數學學習應抱著二個詞——“嚴謹,創新”,所謂嚴謹,就是在平時訓練的時候,不能一絲馬虎,是對就是對,錯了就一定要承認,要找原因,要改正,萬不可以抱著“好像是對的”的心態,矇混過關。至於創新呢,要求就高一點了,要求在你會解決此問題的情況下,你還會不會用另一種更簡單,更有效的方法,這就需要紮實的基本功。平時,我們看到一些人,做題時從不用常規方法,總愛自己創造一些方法以“偏方”解題,雖然有時候也能讓他撞上一些好的方法,但我認為是不可取的。因為你首先必須學會用常規的方法,在此基礎上你才能創新,你的創新才有意義,而那些總是片面“追求”新方法的人,他們的思維有如空中樓閣,必然是曇花一現。當然我們要有創新意識,但是,創新是有條件的,必須有紮實的基礎,因此我想勸一下那些基礎不牢,而平時總愛用“偏方”的同學們,該是清醒一下的時候了,千萬不要繼續鑽那可憐的牛角尖啊!
4.建立良好的學習數學習慣,習慣是經過重複練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕鬆。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。
5.多聽、多作、多想、多問:此“四多”乃培養數學能力的要訣,“聽”就是在“學”,作是“練習”***作課本上的習題或其它問題***,也就是把您所學的,應用到解決問題上。“聽”與“作”難免會碰到疑難,那就要靠“想”的功夫去打通它,假如還想不通,解不來就要“問”——問同學、問老師或參考書,務必將疑難解決為止。這就是所謂的學問:既學又問。
6.要有毅力、要有恆心:基本上要有一個認識:數學能力乃是長期努力累積的結果,而不是一朝一夕之功所能達到的。您可能花一天或一個晚上的功夫把某課文背得滾瓜爛熟,第二天考背誦時對答如流而獲高分,也有可能花了一兩個禮拜的時間拼命學數學,但到頭來數學可能還考不好,這時候您可不能氣餒,也不必為花掉的時間惋惜。
有關 高中數學解題方法的推薦
一、答題和時間的關係
整體而言,高考數學要想考好,必須要有紮實的基礎知識和一定量的習題練習,在此基礎上輔以一些做題方法和考試技巧。往年考試中總有許多考生抱怨考試時間不夠用,導致自己會做的題最後沒時間做,覺得很虧。
高考考的是個人能力,要求考生不但會做題還要準確快速地解答出來,只有這樣才能在規定的時間內做完並能取得較高的分數。因此,對於大部分高考生來說,養成快速而準確的解題習慣並熟練掌握解題技巧是非常有必要的。
二、快與準的關係
在目前題量大、時間緊的情況下,準字則尤為重要。只有準才能得分,只有準你才可不必考慮再花時間檢查,而快是平時訓練的結果,不是考場上所能解決的問題,一味求快,只會落得錯誤百出。如去年第21題應用題,此題列出分段函式解析式並不難,但是相當多的考生在匆忙中把二次函式甚至一次函式都算錯,儘管後繼部分解題思路正確又花時間去算,也幾乎得不到分,這與考生的實際水平是不相符的。適當地慢一點、準一點,可得多一點分;相反,快一點,錯一片,花了時間還得不到分。
三、審題與解題的關係
有的考生對審題重視不夠,匆匆一看急於下筆,以致題目的條件與要求都沒有吃透,至於如何從題目中挖掘隱含條件、啟發解題思路就更無從談起,這樣解題出錯自然多。只有耐心仔細地審題,準確地把握題目中的關鍵詞與量***如至少,a>0,自變數的取值範圍等等***,從中獲取儘可能多的資訊,才能迅速找準解題方向。
四、會做與得分的關係
要將你的解題策略轉化為得分點,主要靠準確完整的數學語言表述,這一點往往被一些考生所忽視,因此卷面上大量出現會而不對對而不全的情況,考生自己的估分與實際得分差之甚遠。如立體幾何論證中的跳步,使很多人丟失1/3以上得分,代數論證中以圖代證,儘管解題思路正確甚至很巧妙,但是由於不善於把圖形語言準確地轉譯為文字語言,得分少得可憐;再如去年理17題三角函式影象變換,許多考生心中有數卻說不清楚,扣分者也不在少數。只有重視解題過程的語言表述,會做的題才能得分。
五、難題與容易題的關係
拿到試卷後,應將全卷通覽一遍,一般來說應按先易後難、先簡後繁的順序作答。近年來考題的順序並不完全是難易的順序,如去年理19題就比理20、理21要難,因此在答題時要合理安排時間,不要在某個卡住的題上打持久戰,那樣既耗費時間又拿不到分,會做的題又被耽誤了。這幾年,數學試題已從一題把關轉為多題把關,因此解答題都設定了層次分明的臺階,***寬,入手易,但是深入難,解到底難,因此看似容易的題也會有咬手的關卡,看似難做的題也有可得分之處。所以考試中看到容易題不可掉以輕心,看到新面孔的難題不要膽怯,冷靜思考、仔細分析,定能得到應有的分數。