高考必用數學公式

  很多同學在複習高考數學的時候,會忽略高考常用數學公式的重要性,其實這是非常重要的。下面小編給大家帶來,希望對你有幫助。

  ***一***

  ***二***

  高考數學易錯知識點

  忽視零截距致誤

  解決有關直線的截距問題時應注意兩點:一是求解時一定不要忽略截距為零這種特殊情況;二是要明確截距為零的直線不能寫成截距式。因此解決這類問題時要進行分類討論,不要漏掉截距為零時的情況。

  忽視圓錐曲線定義中條件致誤

  利用橢圓、雙曲線的定義解題時,要注意兩種曲線的定義形式及其限制條件。如在雙曲線的定義中,有兩點是缺一不可的:其一,絕對值;其二,2a<|F1F2|。如果不滿足第一個條件,動點到兩定點的距離之差為常數,而不是差的絕對值為常數,那麼其軌跡只能是雙曲線的一支。

  誤判直線與圓錐曲線位置關係

  過定點的直線與雙曲線的位置關係問題,基本的解決思路有兩個:一是利用一元二次方程的判別式來確定,但一定要注意,利用判別式的前提是二次項係數不為零,當二次項係數為零時,直線與雙曲線的漸近線平行***或重合***,也就是直線與雙曲線最多隻有一個交點;二是利用數形結合的思想,畫出圖形,根據圖形判斷直線和雙曲線各種位置關係。在直線與圓錐曲線的位置關係中,拋物線和雙曲線都有特殊情況,在解題時要注意,不要忘記其特殊性。

  兩個計數原理不清致誤

  分步加法計數原理與分類乘法計數原理是解決排列組合問題最基本的原理,故理解“分類用加、分步用乘”是解決排列組合問題的前提,在解題時,要分析計數物件的本質特徵與形成過程,按照事件的結果來分類,按照事件的發生過程來分步,然後應用兩個基本原理解決.對於較複雜的問題既要用到分類加法計數原理,又要用到分步乘法計數原理,一般是先分類,每一類中再分步,注意分類、分步時要不重複、不遺漏,對於“至少、至多”型問題除了可以用分類方法處理外,還可以用間接法處理。

  排列、組合不分致誤

  為了簡化問題和表達方便,解題時應將具有實際意義的排列組合問題符號化、數學化,建立適當的模型,再應用相關知識解決.建立模型的關鍵是判斷所求問題是排列問題還是組合問題,其依據主要是看元素的組成有沒有順序性,有順序性的是排列問題,無順序性的是組合問題。

  混淆項係數與二項式係數致誤

  在二項式***a+b***n的展開式中,其通項Tr+1=Crnan-rbr是指展開式的第r+1項,因此展開式中第1,2,3,...,n項的二項式係數分別是C0n,C1n,C2n,...,Cn-1n,而不是C1n,C2n,C3n,...,Cnn。而項的係數是二項式係數與其他數字因數的積。

  迴圈結束判斷不準致誤

 

  控制迴圈結構的是計數變數和累加變數的變化規律以及迴圈結束的條件。在解答這類題目時首先要弄清楚這兩個變數的變化規律,其次要看清楚迴圈結束的條件,這個條件由輸出要求所決定,看清楚是滿足條件時結束還是不滿足條件時結束。