高中數學立體幾何怎麼學好

  高中數學立體幾何一直是數學的一大難點。因為它要求學生有立體感,在一個平面內把幾何圖形的立體感想象出來。怎樣才能學好立體幾何呢?下面小編為你整理了高中數學立體幾何學習方法,希望對你有幫助。

  高中數學立體幾何學習方法

  第一要建立空間觀念,提高空間想象力。

  從認識平面圖形到認識立體圖形是一次飛躍,要有一個過程。有的同學自制一些空間幾何模型並反覆觀察,這有益於建立空間觀念,是個好辦法。有的同學有空就對一些立體圖形進行觀察、揣摩,並且判斷其中的線線、線面、面面位置關係,探索各種角、各種垂線作法,這對於建立空間觀念也是好方法。此外,多用圖表示概念和定理,多在頭腦中“證明”定理和構造定理的“圖”,對於建立空間觀念也是很有幫助的。

  2. 2

  第二要掌握基礎知識和基本技能。

  要用圖形、文字、符號三種形式表達概念、定理、公式,要及時不斷地複習前面學過的內容。這是因為《立體幾何》內容前後聯絡緊密,前面內容是後面內容的根據,後面內容既鞏固了前面的內容,又發展和推廣了前面內容。在解題中,要書寫規範,如用平行四邊形ABCD表示平面時,可以寫成平面AC,但不可以把平面兩字省略掉;要寫出解題根據,不論對於計算題還是證明題都應該如此,不能想當然或全憑直觀;對於文字證明題,要寫已知和求證,要畫圖;用定理時,必須把題目滿足定理的條件逐一交待清楚,自己心中有數而不把它寫出來是不行的。要學會用圖***畫圖、分解圖、變換圖***幫助解決問題;要掌握求各種角、距離的基本方法和推理證明的基本方法——分析法、綜合法、反證法。

  3. 3

  第三要不斷提高各方面能力。

  通過聯絡實際、觀察模型或類比平面幾何的結論來提出命題;對於提出的命題,不要輕易肯定或否定它,要多用幾個特例進行檢驗,最好做到否定舉出反面例子,肯定給出證明。尤拉公式的內容是以研究性課題的形式給出的,要從中體驗創造數學知識。要不斷地將所學的內容結構化、系統化。所謂結構化,是指從整體到區域性、從高層到低層來認識、組織所學知識,並領會其中隱含的思想、方法。所謂系統化,是指將同類問題如平行的問題、垂直的問題、角的問題、距離的問題、惟一性的問題集中起來,比較它們的異同,形成對它們的整體認識。牢固地把握一些能統攝全域性、組織整體的概念,用這些概念統攝早先偶爾接觸過的或是未察覺出明顯關係的已知知識間的聯絡,提高整體觀念。

  學好立體幾何方法

  一、逐漸提高邏輯論證能力

  立體幾何的證明是數學學科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時,首先要保持嚴密性,對任何一個定義、定理及推論的理解要做到準確無誤。符號表示與定理完全一致,定理的所有條件都具備了,才能推出相關結論。切忌條件不全就下結論。其次,在論證問題時,思考應多用分析法,即逐步地找到結論成立的充分條件,向已知靠攏,然後用綜合法***“推出法”***形式寫出。

  二、立足課本,夯實基礎

  學習立體幾何的一個捷徑就是認真學習課本中定理的證明,尤其是一些很關鍵的定理的證明。定理的內容都很簡單,就是線與線,線與面,面與面之間的聯絡的闡述。但定理的證明在初學的時候一般都很複雜,甚至很抽象。深刻掌握定理的內容,明確定理的作用是什麼,多用在那些地方,怎麼用。

  三、培養空間想象力

  為了培養空間想象力,可以在剛開始學習時,動手製作一些簡單的模型用以幫助想象。

  例如:正方體或長方體。在正方體中尋找線與線、線與面、面與面之間的關係。通過模型中的點、線、面之間的位置關係的觀察,逐步培養自己對空間圖形的想象能力和識別能力。

  其次,要培養自己的畫圖能力。可以從簡單的圖形***如:直線和平面***、簡單的幾何體***如:正方體***開始畫起。

  最後要做的就是樹立起立體觀念,做到能想象出空間圖形並把它畫在一個平面***如:紙、黑板***上,還要能根據畫在平面上的“立體”圖形,想象出原來空間圖形的真實形狀。空間想象力並不是漫無邊際的胡思亂想,而是以提設為根據,以幾何體為依託,這樣就會給空間想象力插上翱翔的翅膀。

  四、“轉化”思想的應用

  我個人覺得,解立體幾何的問題,主要是充分運用“轉化”這種數學思想,要明確在轉化過程中什麼變了,什麼沒變,有什麼聯絡,這是非常關鍵的。例如:

  ***1***兩條異面直線所成的角轉化為兩條相交直線的夾角即過空間任意一點引兩條異面直線的平行線。斜線與平面所成的角轉化為直線與直線所成的角即斜線與斜線在該平面內的射影所成的角。

  ***2***異面直線的距離可以轉化為直線和與它平行的平面間的距離,也可以轉化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉化。而面面距離可以轉化為線面距離,再轉化為點面距離,點面距離又可轉化為點線距離。

  ***3***面和麵平行可以轉化為線面平行,線面平行又可轉化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉化。同樣面面垂直可以轉化為線面垂直,進而轉化為線線垂直。

  五、建立數學模型

  新課程標準中多次提到“數學模型”一詞,目的是進一步加強數學與現實世界的聯絡。數學模型是把實際問題用數學語言抽象概括,再從數學角度來反映或近似地反映實際問題時,所得出的關於實際問題的描述。數學模型的形式是多樣的,它們可以是幾何圖形,也可以是方程式,函式解析式等等。實際問題越複雜,相應的數學模型也越複雜。