高中數學立體幾何學習的方法

  立體幾何是高中數學的重點內容之一,如何學好立體幾何一直是學生、家長和教師比較關注的問題,而學好立體幾何的目的之一是學會如何解決立體幾何問題。下面是小編為你整理的高中數學立體幾何學習方法,一起來看看吧。

  高中數學立體幾何學習方法:逐漸提高邏輯論證能力

  論證時,首先要保持嚴密性,對任何一個定義、定理及推論的理解要做到準確無誤。符號表示與定理完全一致,定理的所有條件都具備了,才能推出相關結論。切忌條件不全就下結論。其次,在論證問題時,思考應多用分析法,即逐步地找到結論成立的充分條件,向已知靠攏,然後用綜合法“推出法”形式寫出。

  高中數學立體幾何學習方法:立足課本,夯實基礎

  直線和平面這些內容,是立體幾何的基礎,學好這部分的一個捷徑就是認真學習定理的證明,尤其是一些很關鍵的定理的證明。例如:三垂線定理。定理的內容都很簡單,就是線與線,線與面,面與面之間的關係的闡述。但定理的證明在出學的時候一般都很複雜,甚至很抽象。掌握好定理有以下三點好處:

  1深刻掌握定理的內容,明確定理的作用是什麼,多用在那些地方,怎麼用。

  2培養空間想象力。

  3得出一些解題方面的啟示。

  在學習這些內容的時候,可以用筆、直尺、書之類的東西搭出一個圖形的框架,用以幫助提高空間想象力。對後面的學習也打下了很好的基礎。

  高中數學立體幾何學習方法:“轉化”思想的應用

  我個人覺得,解立體幾何的問題,主要是充分運用“轉化”這種數學思想,要明確在轉化過程中什麼變了,什麼沒變,有什麼聯絡,這是非常關鍵的。例如:

  1兩條異面直線所成的角轉化為兩條相交直線的夾角即過空間任意一點引兩條異面直線的平行線。斜線與平面所成的角轉化為直線與直線所成的角即斜線與斜線在該平面內的射影所成的角。

  2異面直線的距離可以轉化為直線和與它平行的平面間的距離,也可以轉化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉化。而面面距離可以轉化為線面距離,再轉化為點面距離,點面距離又可轉化為點線距離。

  3面和麵平行可以轉化為線面平行,線面平行又可轉化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉化。同樣面面垂直可以轉化為線面垂直,進而轉化為線線垂直。

  4三垂線定理可以把平面內的兩條直線垂直轉化為空間的兩條直線垂直,而三垂線逆定理可以把空間的兩條直線垂直轉化為平面內的兩條直線垂直。

  以上這些都是數學思想中轉化思想的應用,通過轉化可以使問題得以大大簡化。

  高中數學立體幾何學習方法:總結規律,規範訓練

  立體幾何解題過程中,常有明顯的規律性。例如:求角先定平面角、三角形去解決,正餘弦定理、三角定義常用,若是餘弦值為負值,異面、線面取銳角。對距離可歸納為:距離多是垂線段,放到三角形中去計算,經常用正餘弦定理、勾股定理,若是垂線難做出,用等積等高來轉換。不斷總結,才能不斷高。

  還要注重規範訓練,高考中反映的這方面的問題十分嚴重,不少考生對作、證、求三個環節交待不清,表達不夠規範、嚴謹,因果關係不充分,圖形中各元素關係理解錯誤,符號語言不會運用等。這就要求我們在平時養成良好的答題習慣,具體來講就是按課本上例題的答題格式、步驟、推理過程等一步步把題目演算出來。答題的規範性在數學的每一部分考試中都很重要,在立體幾何中尤為重要,因為它更注重邏輯推理。對於即將參加高考的同學來說,考試的每一分都是重要的,在“按步給分”的原則下,從平時的每一道題開始培養這種規範性的好處是很明顯的,而且很多情況下,本來很難答出來的題,一步步寫下來,思維也逐漸打開了。