浙教版認識更大的數教案

  教案作為教師對課堂教學的一種預計和構想,在教學中佔有十分重要的地位。接下來小編為你整理了,一起來看看吧。

  

  單元教學目標:

  1. 經歷收集日常生活中常見大數的過程,感受學習更大數的必要性,並能體驗大數的實際意義。

  2. 通過實踐操作活動,認識億以內數的計數單位,瞭解各單位之間的關係。

  並會正確讀、寫以及比較數的大小。

  3. 在收集資料的過程中,認識資料改寫單位的必要性,掌握萬、億為單位表示大數的改寫方法。

  4. 理解近似數在實際生活中運用的意義,能自主探索、掌握近似數的方法,能對更大的數進行估計。

  單元教學建議:

  本單元在學生認識萬以內數的基礎上,進一步認識更大的數在實際生活中的運用,掌握更大數的讀寫,並能在資料的收集過程中,認識近似數。學習的內容主要有四個部分:億以內數的認識、億以內數的讀寫、大數的改寫以及近似數的認識。在教學過程中,應注意以下幾點:

  1. 在數數的過程中,感受大數的意義

  本單元學生認識的數都是一些較大的數,一般學生在生活中接觸得比較少。為增加學生的感性知識,豐富學生對數的認識,教材中多次安排了數一數的活動。第一次數數,通過數人民幣的過程,認識“十萬”。人民幣是學生相對比較熟悉的,也是他們能直接感受的。教材中安排的一疊人民幣是一萬元,那麼九疊人民幣是幾萬元呢?當再增加一萬元後,又是幾萬呢?對於這些問題可以放手讓學生自己進行交流,從中逐步引出“十萬”的計數單位。當然,在課堂教學中不可能直接請學生數這麼多的人民幣,因此,有條件的學校,也可以製作一些卡片來替代,如1張卡片代表一萬元,那麼9張卡片是多少元呢?第二次數數,通過賣轎車的活動,認識“百萬”、“千萬”、“億”。教材中安排的“1輛轎車賣100000元”,目的是提供給學生數的機會,通過逐步數的過程,認識“百萬”這一計數單位。如果學生的基礎比較好,就不需要逐一數數,也可以跳躍式的數。如1輛轎車賣100000元,那麼2輛、3輛是多少元呢?6輛、7輛是多少元呢?10輛是多少元呢?由於學生有了前面兩次數數的經驗,認識“千萬”、“億”這兩個計數單位就可以精簡一些,以培養學生的推理能力。第三次數數,練習過程中的數數。練習中安排的多道題目都是需要學生數一數,力圖通過數一數的過程,進一步理解各計數單位之間的關係,體會到十進位制計數的特點。

  學生在數的過程中,及時地進行概括是本單元學生的重點環節。如學生在第一次數的時候,把數直觀的人民幣與計數器上對資料的認識結合起來,是提高學生抽象能力的舉措。通過計數器上珠子的撥一撥,促使學生能將直觀的數數與抽象地數數統一起來。同樣,後面兩次的數數,也應與計數器上撥數結合起來。

  2. 在資料收集的過程中,掌握大數的讀寫

  在學生生活的環境中,經常可以接觸到比較大的數。對此,當學生初步認識了大數後,可以組織學生到各種媒體上收集一些資料,並能說一說這些資料的實際意義,以提高學生感受的程度。接著,可以把學生收集的一組資料進行討論,從而引出大數的讀寫方法。教材中安排的“人口普查”的一些資料,僅表示資料在日常生活中的作用,在教學中可以運用這些資料開展活動,也可以直接討論學生收集的資料,然後引出讀法與寫法。本冊教材將多位數的讀法與寫法結合在一起進行教學,因為這兩個方面是一個有機的整體。當然,在教學中,可以先突出讀法,在學生掌握讀法的基礎上,然後再討論寫法。

  加強對資料實際意義的理解,能用數學的眼光分析身邊的一些資料的意義是本單元著重滲透的思想。不論是資料的收集過程,還是解釋資料的意義,都是為了讓學生在生活實際的背景下進行學習,這一點在教學時需要格外地重視。如第6頁上的“說一說”內容的安排,其重要的一點是通過學生對這些資料的讀寫過程,既能鞏固他們讀寫的方法,更能體會到資料是與生活緊密聯絡的。

  3. 結合實際背景,認識資料改寫單位的必要性

  一些比較大的資料,由於書寫的不方便,需要將一些較大的資料改寫成以萬、或億作單位,這樣既方便書寫,又便於讀數。教材中安排的“國土面積”中的一些資料都是比較大的資料,通過對這些資料的改寫過程,讓學生體會到改寫的必要性。因此,資料改寫的活動應儘可能創造條件安排在一定的背景下進行,從而使學生體會改寫所帶來的方便。

  資料的改寫是對資料表示形式的變化,它的大小並沒有發生變化。對此,在改寫過程中應向學生說明改寫後為什麼要寫計數單位的道理。如9600000=960萬,等號左邊的數是以“個”為單位,一般以“個”為單位就不寫計數單位了。而等號的右邊是以“萬”為單位,如果這個計數單位不寫,那麼就會變成以“個”為單位,這樣兩者之間就會相差很大。這些道理,可以結合具體的情景加以說明,以便學生在理解的過程中減少錯誤。

  4. 在觀察比較中,掌握求近似數的方法

  近似數是日常生活中經常運用的數,它與精確數不同,表示的僅是某一物件的一定範圍。對於近似數學生在日常活動中也已接觸到,不過沒有出現這樣的概念。而本單元的學習是相對系統一些,同時掌握求近似數的方法主要是以四捨五入法為主。

  教材中安排的“森林面積”活動,是一些有關植樹的題材,這些題材的資料中有些是精確的,有些是近似的。出示這組資料後,可以讓學生自己說一說,並討論為什麼會形成這些近似數,從而讓學生明白近似數產生的過程,以加深對近似數概念的理解。接著,讓學生自己舉例說一說生活中的近似數。在學生說的過程中,教師要善於幫助學生進行辨別,區分精確數與近似數的差異。

  求近似數方法教材採用觀察思考的方法,把一組不同的近似數放在一起,根據不同的要求,得出不同的近似數。教學時,可以採用對比的方法,將這一組資料整齊排列,然後請學生進行觀察,接著再進行討論。如精確到千公頃:約是224319千公頃,那麼千位上的“9”是怎麼出來的?通過一組資料的比較,相信學生能發現求近似數的方法。

  近似數在具體的運用中,將根據不同的需要取不同的精確值。教材第11頁第2題安排的練習,就是一道根據實際情景需要選擇不同的近似數。在教學時,可以先讓學生自己進行選擇,然後再進行分析,尋找其中的規律。一般說,是以對應的方法來確定。如第⑴題中,全國造林是以“萬公頃”為單位,那麼比較內蒙古自治區的造林也應用“萬公頃”為單位。第⑵題2000年內蒙古自治區造林是以“千公頃”為單位,那麼比較2001年的造林數也應以“千公頃”為單位。