關於高中數學解題的技巧策略

  以下小編分享技巧方法,希望這些方法能夠起到拋磚引玉的作用,希望大家一起學習,共同進步。
 

  數學解題的思維過程

  數學解題的思維過程是指從理解問題開始,經過探索思路,轉換問題直至解決問題,進行回顧的全過程的思維活動。

  對於數學解題思維過程,G . 波利亞提出了四個階段****見附錄***,即弄清問題、擬定計劃、實現計劃和回顧。這四個階段思維過程的實質,可以用下列八個字加以概括:理解、轉換、實施、反思。

  第一階段:理解問題是解題思維活動的開始。

  第二階段:轉換問題是解題思維活動的核心,是探索解題方向和途徑的積極的嘗試發現過程,是思維策略的選擇和調整過程。

  第三階段:計劃實施是解決問題過程的實現,它包含著一系列基礎知識和基本技能的靈活運用和思維過程的具體表達,是解題思維活動的重要組成部分。

  第四階段:反思問題往往容易為人們所忽視,它是發展數學思維的一個重要方面,是一個思維活動過程的結束包含另一個新的思維活動過程的開始。

  數學解題的技巧

  為了使回想、聯想、猜想的方向更明確,思路更加活潑,進一步提高探索的成效,我們必須掌握一些解題的策略。

  一切解題的策略的基本出發點在於“變換”,即把面臨的問題轉化為一道或幾道易於解答的新題,以通過對新題的考察,發現原題的解題思路,最終達到解決原題的目的。

  基於這樣的認識,常用的解題策略有:熟悉化、簡單化、直觀化、特殊化、一般化、整體化、間接化等。

  一、 熟悉化策略

  所謂熟悉化策略,就是當我們面臨的是一道以前沒有接觸過的陌生題目時,要設法把它化為曾經解過的或比較熟悉的題目,以便充分利用已有的知識、經驗或解題模式,順利地解出原題。

  一般說來,對於題目的熟悉程度,取決於對題目自身結構的認識和理解。從結構上來分析,任何一道解答題,都包含條件和結論***或問題***兩個方面。因此,要把陌生題轉化為熟悉題,可以在變換題目的條件、結論***或問題***以及它們的***上多下功夫。

  常用的途徑有:

  ***一***、充分聯想回憶基本知識和題型

  按照波利亞的觀點,在解決問題之前,我們應充分聯想和回憶與原有問題相同或相似的知識點和題型,充分利用相似問題中的方式、方法和結論,從而解決現有的問題。

  ***二***、全方位、多角度分析題意

  對於同一道數學題,常常可以不同的側面、不同的角度去認識。因此,根據自己的知識和經驗,適時調整分析問題的視角,有助於更好地把握題意,找到自己熟悉的解題方向。

  ***三***恰當構造輔助元素

  數學中,同一素材的題目,常常可以有不同的表現形式;條件與結論***或問題***之間,也存在著多種***。因此,恰當構造輔助元素,有助於改變題目的形式,溝通條件與結論***或條件與問題***的內在聯絡,把陌生題轉化為熟悉題。

  數學解題中,構造的輔助元素是多種多樣的,常見的有構造圖形***點、線、面、體***,構造演算法,構造多項式,構造方程***組***,構造座標系,構造數列,構造行列式,構造等價性命題,構造反例,構造數學模型等等。

  二、簡單化策略

  所謂簡單化策略,就是當我們面臨的是一道結構複雜、難以入手的題目時,要設法把轉化為一道或幾道比較簡單、易於解答的新題,以便通過對新題的考察,啟迪解題思路,以簡馭繁,解出原題。

  簡單化是熟悉化的補充和發揮。一般說來,我們對於簡單問題往往比較熟悉或容易熟悉。

  因此,在實際解題時,這兩種策略常常是結合在一起進行的,只是著眼點有所不同而已。

  解題中,實施簡單化策略的途徑是多方面的,常用的有: 尋求中間環節,分類考察討論,簡化已知條件,恰當分解結論等。