高中數學解題技巧精編
數學科目與其他科目相比存在較大差異,要求學生在學習過程中能充分理解知識內涵,並能將其運用到各類題型解答中去.接下來小編為你整理了,一起來看看吧。
:常用的途徑
***一***、充分聯想回憶基本知識和題型:
按照波利亞的觀點,在解決問題之前,我們應充分聯想和回憶與原有問題相同或相似的知識點和題型,充分利用相似問題中的方式、方法和結論,從而解決現有的問題。
***二***、全方位、多角度分析題意:
對於同一道數學題,常常可以不同的側面、不同的角度去認識。因此,根據自己的知識和經驗,適時調整分析問題的視角,有助於更好地把握題意,找到自己熟悉的解題方向。
***三***恰當構造輔助元素:
數學中,同一素材的題目,常常可以有不同的表現形式;條件與結論***或問題***之間,也存在著多種***。因此,恰當構造輔助元素,有助於改變題目的形式,溝通條件與結論***或條件與問題***的內在聯絡,把陌生題轉化為熟悉題。
數學解題中,構造的輔助元素是多種多樣的,常見的有構造圖形***點、線、面、體***,構造演算法,構造多項式,構造方程***組***,構造座標系,構造數列,構造行列式,構造等價性命題,構造反例,構造數學模型等等。
:簡單化策略
所謂簡單化策略,就是當我們面臨的是一道結構複雜、難以入手的題目時,要設法把轉化為一道或幾道比較簡單、易於解答的新題,以便通過對新題的考察,啟迪解題思路,以簡馭繁,解出原題。
簡單化是熟悉化的補充和發揮。一般說來,我們對於簡單問題往往比較熟悉或容易熟悉。
因此,在實際解題時,這兩種策略常常是結合在一起進行的,只是著眼點有所不同而已。
解題中,實施簡單化策略的途徑是多方面的,常用的有:尋求中間環節,分類考察討論,簡化已知條件,恰當分解結論等。
1、尋求中間環節,挖掘隱含條件:
在些結構複雜的綜合題,就其生成背景而論,大多是由若干比較簡單的基本題,經過適當組合抽去中間環節而構成的。
因此,從題目的因果關係入手,尋求可能的中間環節和隱含條件,把原題分解成一組相互聯絡的系列題,是實現複雜問題簡單化的一條重要途徑。
2、分類考察討論:
在些數學題,解題的複雜性,主要在於它的條件、結論***或問題***包含多種不易識別的可能情形。對於這類問題,選擇恰當的分類標準,把原題分解成一組並列的簡單題,有助於實現複雜問題簡單化。
3、簡單化已知條件:
有些數學題,條件比較抽象、複雜,不太容易入手。這時,不妨簡化題中某些已知條件,甚至暫時撇開不顧,先考慮一個簡化問題。這樣簡單化了的問題,對於解答原題,常常能起到穿針引線的作用。
4、恰當分解結論:
有些問題,解題的主要困難,來自結論的抽象概括,難以直接和條件聯絡起來,這時,不妨猜想一下,能否把結論分解為幾個比較簡單的部分,以便各個擊破,解出原題。
:直觀化策略
所謂直觀化策略,就是當我們面臨的是一道內容抽象,不易捉摸的題目時,要設法把它轉化為形象鮮明、直觀具體的問題,以便憑藉事物的形象把握題中所及的各物件之間的聯絡,找到原題的解題思路。
***一***、圖表直觀:
有些數學題,內容抽象,關係複雜,給理解題意增添了困難,常常會由於題目的抽象性和複雜性,使正常的思維難以進行到底。
對於這類題目,藉助圖表直觀,利用示意圖或表格分析題意,有助於抽象內容形象化,複雜關係條理化,使思維有相對具體的依託,便於深入思考,發現解題線索。
***二***、圖形直觀:
有些涉及數量關係的題目,用代數方法求解,道路崎嶇曲折,計算量偏大。這時,不妨藉助圖形直觀,給題中有關數量以恰當的幾何分析,拓寬解題思路,找出簡捷、合理的解題途徑。
***三***、圖象直觀:
不少涉及數量關係的題目,與函式的圖象密切相關,靈活運用圖象的直觀性,常常能以簡馭繁,獲取簡便,巧妙的解法。
四、特殊化策略
所謂特殊化策略,就是當我們面臨的是一道難以入手的一般性題目時,要注意從一般退到特殊,先考察包含在一般情形裡的某些比較簡單的特殊問題,以便從特殊問題的研究中,拓寬解題思路,發現解答原題的方向或途徑。
五、一般化策略
所謂一般化策略,就是當我們面臨的是一個計算比較複雜或內在聯絡不甚明顯的特殊問題時,要設法把特殊問題一般化,找出一個能夠揭示事物本質屬性的一般情形的方法、技巧或結果,順利解出原題。
六、整體化策略
所謂整體化策略,就是當我們面臨的是一道按常規思路進行區域性處理難以奏效或計算冗繁的題目時,要適時調整視角,把問題作為一個有機整體,從整體入手,對整體結構進行全面、深刻的分析和改造,以便從整體特性的研究中,找到解決問題的途徑和辦法。
七、間接化策略
所謂間接化策略,就是當我們面臨的是一道從正面入手複雜繁難,或在特定場合甚至找不到解題依據的題目時,要隨時改變思維方向,從結論***或問題***的反面進行思考,以便化難為易解出原題。