自然哲學的數學原理的讀後感

  《自然哲學的數學原理》達到的理論高度是前所未有的,其後也不多見,下面是為大家準備的,希望大家喜歡!

  範文1

  《自然哲學的數學原理》是第一次科學革命的集大成之作,它在物理學、數學、天文學 和哲學等領域產生了巨大影響。在寫作方式上,牛頓遵循古希臘的公理化模式,從定義、定 律***即公理***出發,匯出命題;對具體的問題***如月球的運動*** ,他把從理論匯出的結果和 觀察結果相比較。全書共分五部分,首先“定義”,這一部分給出了物質的量、時間、空間、向心力等的定義。第二部分是“公理或運動的定律”,包括著名的運動三 定律。接下來的內容分為三卷。前兩卷的標題一樣,都是“論物體的運動”。

  第一卷研究在 無阻力的自由空間中物體的運動,許多命題涉及已知力解定受力物體的運動狀態***軌道、速 度、運動時間等*** ,以及由物體的運動狀態確定所受的力。第二卷研究在阻力給定的情況下 物體的運動、流體力學以及波動理論。壓卷之作的第三卷是標題是“論宇宙的系統”。由第 一卷的結果及天文觀測牛頓匯出了萬有引力定律, 並由此研究地球的形狀, 解釋海洋的潮汐, 探究月球的運動, 確定彗星的軌道。

  本卷中的“研究哲學的規則”及“總釋”對哲學和神學 影響很大。 當時英國皇家學會要出版這部書, 但是湊不出適當款子, 而皇家學會的幹事胡克則聲稱 萬有引力的平方反比定律是他首先發現的,愛德蒙·哈雷出於氣憤,提議牛頓寫了這本書, 並由他自費出版了牛頓的書,於1687年7月《自然哲學的數學原理》拉丁文版問世。

  範文2

  《自然哲學的數學原理》是第一次科學革命的集大成之作,被認為是古往今來最偉大的科學著作,它在物理學、數學、天文學和哲學等領域產生了巨大影響。在寫作方式上,牛頓遵循古希臘的公理化模式,從定義、定律***公理***出發,匯出命題;對具體的問題***如月球的運動***,他把從理論匯出的結果和觀察結果相比較。全書共分五部分,首先“定義”,這一部分給出了物質的量、時間、空間、向心力等的定義。第二部分是“公理或運動的定律”,包括著名的運動三定律。接下來的內容分為三卷。前兩卷的標題一樣,都是“論物體的運動”。第一卷研究在無阻力的自由空間中物體的運動,許多命題涉及已知力解定受力物體的運動狀態***軌道、速度、運動時間等***,以及由物體的運動狀態確定所受的力。第二卷研究在阻力給定的情況下物體的運動、流體力學以及波動理論。壓卷之作的第三卷是標題是“論宇宙的系統”。由第一卷的結果及天文觀測牛頓匯出了萬有引力定律,並由此研究地球的形狀,解釋海洋的潮汐,探究月球的運動,確定彗星的軌道。本卷中的“研究哲學的規則”及“總釋”對哲學和神學影響很大。

  《自然哲學的數學原理》無論從科學史還是整個人類文明史來看,牛頓的《自然哲學的數學原理》都是一部劃時代的鉅著。在科學的歷史上,《自然哲學的數學原理》是經典力學的第一部經典著作,也是人類掌握的第一個完整的科學的宇宙論和科學理論體系,其影響所及遍佈經典自然科學的所有領域,在其後的300年時間裡一再取得豐碩成果。從科學研究內部來看,《自然哲學的數學原理》示範了一種現代科學理論體系的樣板,包括理論體系結構、研究方法和研究態度、如何處理人與自然的關係等多個方面的內容。此外,《自然哲學的數學原理》及其作者與同時代著名人物的互動關係也是科學史研究和其它學術史研究中經久不息的話題。

  當時英國皇家學會要出版這部書,但是湊不出適當款子,而皇家學會的幹事胡克則聲稱萬有引力的平方反比定律是他首先發現的,愛德蒙·哈雷出於氣憤,提議牛頓寫了這本書,並由他自費出版了牛頓的書,於1687年7月《自然哲學的數學原理》拉丁文版問世。1713年出第2版,1725年出第3版。1729年由莫特將其譯成英文付印,就是現在所見流行的英文字。各版均由牛頓本人作了增訂,並加序言。後世有多種文字的譯本,中譯本出版於1931年。該書的宗旨在於從各種運動現象探究自然力,再用這些力說明各種自然現象。 全書共分四個部分。開頭和第一篇介紹了力學的基本運動三定律與基本的力學量;其中質量的概念是由牛頓首先提出及定義的,但牛頓當時稱其為“物質的量”,這一名稱後來被另一個物理量使用。第二篇中,討論了物體在阻尼介質中的運動,提出阻力大小與物體速度的一次及二次方成正比的公式。還研究了氣體的彈性和可壓縮性,以及空氣中的聲速等問題,這為牛頓提供了一個展示他數學技巧的舞臺。第三篇題目為宇宙體系,討論了太陽系的行星、行星的衛星和彗星的執行,以及海洋潮汐的產生,涉及到多體問題中的攝動。

  牛頓並沒有聲稱自己要構造一個體系。牛頓在《自然哲學之數學原理》第一版的序言一開始就指出,他要「致力於發展與哲學相關的數學」,這本書是幾何學與力學的結合,是一種「理性的力學」,一種「精確地提出問題並加以演示的科學,旨在研究某種力所產生的運動,以及某種運動所需要的力。他的任務是“由動現象去研究自然力,再由這些力去推演其它的運動現象”。

  然而牛頓實際上是構造了一個人類有史以來最為巨集偉的體系,他所說的力,主要是重力,我們今天稱之為引力,或萬有引力,以及由重力所衍生出來的摩擦力、阻力和海洋的潮汐力等,而運動則包括落體、拋體、球體滾動、單擺與復擺、流體、行星自轉與公轉、迴歸點、軌道章動等,簡而言之,包括當時已知的一切運動形式和現象。也就是說,牛頓是要用統一的力學原因去解釋從地面物體到天體的所有運動和現象。

  在結構上,《自然哲學之數學原理》是一種標準的公理化體系,它從最基本的定義和公理出發,「在第一編和第二編中推匯出若干普適命題」,其中第一編題為“物體的運動”為全書的討論做了數學工具上的準備,把各種運動形式加以分類,詳細考察每一種運動形式與力的關係;第二編討論“物體***在阻滯介質中***的運動”,近一步考察了各種形式阻力對運動的影響,討論地面上各種實際存在的力與運動的情況。在第三編中“示範了把它們應用於宇宙體系,用前兩編中數學證明的命題由天文現象推演出使物體傾向於太陽和行星的重力,再運用其他的數學命題由這些力推算出行星、彗星、月球和海洋的運動”。在全書的最後牛頓寫下了一段著名的「總釋」,集中表述了牛頓對於宇宙間萬事萬物的根本原因——萬有引力以及我們的宇宙為什是一個這樣的優美的體系的總原因的看法,集中表達了他對於上帝的存在和本質的見解.

  範文3

  在寫作手法上,牛頓是個神情十分專注的人,他在搭建自己的體系時,雖然仿照歐幾里德***Euclid***的《幾何原本》,但他從沒有忘記自己的使命是解釋自然現象,沒有把自己迷失在純粹形式化的推理中。他是極為出色的數學家,在數學上有一系列一流的發明,但他嚴格地把數學當做工具,只是在有需要時才帶領讀者稍微作一點數學上的遠足。另一方面,牛頓也絲毫沒有沈醉於純粹的哲學思辯,在《自然哲學之數學原理》中所有的命題都來自於現實世界,或是數學的,或是天文學的,或是物理學的,即牛頓所理解的自然哲學的。《自然哲學之數學原理》中全部的論述都以命題形式給出,每一個命題都給出證明或求解,所有的求證求解都是完全數學化的,必要時附加推論,而每一個推論又都有證明或求解。只是在牛頓認為某個問題在哲學上有特殊意義時,他才加上一個附註,對問題加以解釋或進一步推廣。 全書貫穿了牛頓和萊布尼茲分別獨立發明的數學方法——微積分,不過牛頓稱其為“流數”,這是牛頓的成就之一。它在科學史上佔有非常重要的地位,因它標誌著經典力學體系的建立。

  牛頓在世時共發表了三個版本的《自然哲學的數學原理》,分別在1687年、1713年及1726年發表,都是拉丁文版本。牛頓去世後的第一個英文譯本是由第三版翻譯而來,出版於1729年,譯者是莫特***Andrew Motte***。在1802年,又出現了根據《自然哲學的數學原理》第一版翻譯的英文譯本。1930年,美國學者、科學史家卡約裡***Florian Caiofi***在莫特的英譯本基礎上用現代英文校訂出版liuxue86,成為20世紀裡讀者群最大的《自然哲學的數學原理》標準版本。60年代初,美國科學史家科恩***Cohen***和法國科學史家科瓦雷***A1exander Koyré***合作,根據比莫特譯本更早的《自然哲學的數學原理》第一版的英譯本,也推出了《自然哲學的數學原理》的現代英文版。

  在科學史上,《自然哲學的數學原理》是經典力學的第一部經典著作,劃時代的鉅著,也是人類掌握的第一個完整的科學的宇宙論和科學理論體系,其影響所及,遍佈經典自然科學的所有領域,並在其後300年裡一再取得豐碩成果。 就人類文明史而言,它成就了英國工業革命,在法國誘發了啟蒙運動和大革命,在社會生產力和基本社會制度兩方面都有直接而豐富的成果。迄今為止,還沒有第二個重要的科學和學術理論,取得過如此之大的成就. 《自然哲學的數學原理》達到的理論高度是前所未有的,其後也不多見。愛因斯坦***Einstein***說過:「至今還沒有可能用一個同樣無所不包的統一概念,來代替牛頓的關於宇宙的統一概念。而要是沒有牛頓的明晰的體系,我們到現在為止所取得的收穫就會成為不可能。」實際上,牛頓在《自然哲學的數學原理》中討論的問題及其處理問題的方法,至今仍是大學數理專業中教授的內容,而其它專業的學生學到的關於物理學、數學和天文學的知識,無論在深度和廣度上都沒有達到《自然哲學的數學原理》的境界。

  凡此種種,都決定了《自然哲學的數學原理》這部著作的永恆價值。