高一上冊數學集合知識點總結及例題講解
學習數學需要講究方法和技巧,更要學會對知識點進行歸納整理。下面是小編為大家整理的高一數學集合知識點,希望對大家有所幫助!
高一數學集合知識點總結
一.知識歸納:
1.集合的有關概念。
1***集合***集***:某些指定的物件集在一起就成為一個集合***集***.其中每一個物件叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性***a?A和a?A,二者必居其一***、互異性***若a?A,b?A,則a≠b***和無序性***{a,b}與{b,a}表示同一個集合***。
③集合具有兩方面的意義,即:凡是符合條件的物件都是它的元素;只要是它的元素就必須符號條件
2***集合的表示方法:常用的有列舉法、描述法和圖文法
3***集合的分類:有限集,無限集,空集。
4***常用數集:N,Z,Q,R,N*
2.子集、交集、並集、補集、空集、全集等概念。
1***子集:若對x∈A都有x∈B,則A B***或A B***;
2***真子集:A B且存在x0∈B但x0 A;記為A B***或 ,且 ***
3***交集:A∩B={x| x∈A且x∈B}
4***並集:A∪B={x| x∈A或x∈B}
5***補集:CUA={x| x A但x∈U}
注意:①? A,若A≠?,則? A ;
②若 , ,則 ;
③若 且 ,則A=B***等集***
3.弄清集合與元素、集合與集合的關係,掌握有關的術語和符號,特別要注意以下的符號:***1*** 與 、?的區別;***2*** 與 的區別;***3*** 與 的區別。
4.有關子集的幾個等價關係
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5.交、並集運算的性質
①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
③Cu ***A∪B***= CuA∩CuB,Cu ***A∩B***= CuA∪CuB;
6.有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
二.例題講解:
【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關係
A*** M=N P B*** M N=P C*** M N P D*** N P M
分析一:從判斷元素的共性與區別入手。
解答一:對於集合M:{x|x= ,m∈Z};對於集合N:{x|x= ,n∈Z}
對於集合P:{x|x= ,p∈Z},由於3***n-1***+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以M N=P,故選B。
分析二:簡單列舉集合中的元素。
解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時不要急於判斷三個集合間的關係,應分析各集合中不同的元素。
= ∈N, ∈N,∴M N,又 = M,∴M N,
= P,∴N P 又 ∈N,∴P N,故P=N,所以選B。
點評:由於思路二隻是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設集合 , ,則*** B ***
A.M=N B.M N C.N M D.
解:
當 時,2k+1是奇數,k+2是整數,選B
【例2】定義集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則A*B的子集個數為
A***1 B***2 C***3 D***4
分析:確定集合A*B子集的個數,首先要確定元素的個數,然後再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。
解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。
變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那麼集合M的個數為
A***5個 B***6個 C***7個 D***8個
變式2:已知{a,b} A {a,b,c,d,e},求集合A.
解:由已知,集合中必須含有元素a,b.
集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
評析 本題集合A的個數實為集合{c,d,e}的真子集的個數,所以共有 個 .
【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數p,q,r的值。
解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3.
∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A
∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的兩根為-2和1,
∴ ∴
變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數b,c,m的值.
解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=-5
∴B={x|x2-5x+6=0}={2,3} ∵A∪B=B ∴
又 ∵A∩B={2} ∴A={2} ∴b=-***2+2***=4,c=2×2=4
∴b=-4,c=4,m=-5
【例4】已知集合A={x|***x-1******x+1******x+2***>0},集合B滿足:A∪B={x|x>-2},且A∩B={x|1
分析:先化簡集合A,然後由A∪B和A∩B分別確定數軸上哪些元素屬於B,哪些元素不屬於B。
解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1] B,而***-∞,-2***∩B=ф。
綜合以上各式有B={x|-1≤x≤5}
變式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。***答案:a=-2,b=0***
點評:在解有關不等式解集一類集合問題,應注意用數形結合的方法,作出數軸來解之。
變式2:設M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有滿足條件的a的集合。
解答:M={-1,3} , ∵M∩N=N, ∴N M
①當 時,ax-1=0無解,∴a=0 ②
綜①②得:所求集合為{-1,0, }
【例5】已知集合 ,函式y=log2***ax2-2x+2***的定義域為Q,若P∩Q≠Φ,求實數a的取值範圍。
分析:先將原問題轉化為不等式ax2-2x+2>0在 有解,再利用引數分離求解。
解答:***1***若 , 在 內有有解
令 當 時,
所以a>-4,所以a的取值範圍是
變式:若關於x的方程 有實根,求實數a的取值範圍。
解答:
點評:解決含引數問題的題目,一般要進行分類討論,但並不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關鍵。
看過" "的還:
- 高一上冊數學集合知識點總結及例題講解
- 山東高考語文試卷
- 工程勘察設計收費管理規定
- 幼兒園學前班第二學期學期末工作總結
- 你什麼時候出生的英文
- 最霸道的表白句子_暖心告白語錄
- 最新端午節的微信祝福語
- 二年級下學期家長評語
- 雪地裡的浪漫
- 冬季養生吃什麼蔬菜好
- 生髮有哪些實用食療方法
- 蔡依林歌曲小傷口推薦
- 路從今夜白電視劇林子晏的扮演者是誰
- 成都購房貸款的條件都有哪些
- 英語手抄報用英文怎麼寫好看
- 十二星座圖片動漫少女雙子座
- 感謝領導的一封信範本精選
- 公司崗位職責範本
- 難民用英語怎麼說
- 五年級小學生期末綜合評語
- 康熙字典五行屬金的字
- 康熙字典五行屬木的字
- 康熙字典五行屬水的字
- 康熙字典五行屬火的字
- 康熙字典五行屬土的字