初二數學上冊第一二章知識點整理

  在我們能掌控和拼搏的時間裡學習八年級數學知識,去提升我們生命的質量。現在你不玩命的學,以後命玩你。以下是小編為大家整理的初二數學上冊知識點整理,希望你們喜歡。

  初二數學上冊知識點整理:第一二章

  第一章 全等三角形

  知識概念

  1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動***或稱變換***使之與另一個重合,這兩個三角形稱為全等三角形。

  2.全等三角形的性質: 全等三角形的對應角相等、對應邊相等。

  3.三角形全等的判定公理及推論有:

  ***1***“邊角邊”簡稱“SAS”

  ***2***“角邊角”簡稱“ASA”

  ***3***“邊邊邊”簡稱“SSS”

  ***4***“角角邊”簡稱“AAS”

  ***5***斜邊和直角邊相等的兩直角三角形***HL***。

  4.角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。

  5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件***包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關係***,②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式***順序和對應關係從已知推匯出要證明的問題***.

  在學習三角形的全等時,教師應該從實際生活中的圖形出發,引出全等圖形進而引出全等三角形。通過直觀的理解和比較發現全等三角形的奧妙之處。在經歷三角形的角平分線、中線等探索中激發學生的集合思維,啟發他們的靈感,使學生體會到集合的真正魅力。

  第二章 軸對稱

  知識概念

  1.對稱軸:如果一個圖形沿某條直線摺疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。

  2.性質: ***1***軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。

  ***2***角平分線上的點到角兩邊距離相等。

  ***3***線段垂直平分線上的任意一點到線段兩個端點的距離相等。

  ***4***與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

  ***5***軸對稱圖形上對應線段相等、對應角相等。

  3.等腰三角形的性質:等腰三角形的兩個底角相等,***等邊對等角***

  4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。

  5.等腰三角形的判定:等角對等邊。

  6.等邊三角形角的特點:三個內角相等,等於60°,

  7.等邊三角形的判定: 三個角都相等的三角形是等腰三角形。

  有一個角是60°的等腰三角形是等邊三角形

  有兩個角是60°的三角形是等邊三角形。

  8.直角三角形中,30°角所對的直角邊等於斜邊的一半。

  9.直角三角形斜邊上的中線等於斜邊的一半。

  本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑑賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,並利用這些性質來解決一些數學問題。

  初二數學上冊知識點整理***一***

  實數

  1.算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。

  2.平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。

  3.正數有兩個平方根***一正一負***它們互為相反數;0只有一個平方根,就是它本身;負數沒有平方根。

  4.正數的立方根是正數;0的立方根是0;負數的立方根是負數。

  5.數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0

  實數部分主要要求學生了解無理數和實數的概念,知道實數和數軸上的點一一對應,能估算無理數的大小;瞭解實數的運演算法則及運算律,會進行實數的運算。重點是實數的意義和實數的分類;實數的運演算法則及運算律。

  初二數學上冊知識點整理***二***

  一次函式

  知識概念

  1.一次函式:若兩個變數x,y間的關係式可以表示成y=kx+b***k≠0***的形式,則稱y是x的一次函式***x為自變數,y為因變數***。特別地,當b=0時,稱y是x的正比例函式。

  2.正比例函式一般式:y=kx***k≠0***,其圖象是經過原點***0,0***的一條直線。

  3.正比例函式y=kx***k≠0***的圖象是一條經過原點的直線,當k>0時,直線y=kx經過第一、三象限,y隨x的增大而增大,當k<0時,直線y=kx經過第二、四象限,y隨x的增大而減小,在一次函式y=kx+b中:當k>0時,y隨x的增大而增大; 當k<0時,y隨x的增大而減小。

  4.已知兩點座標求函式解析式:待定係數法

  一次函式是初中學生學習函式的開始,也是今後學習其它函式知識的基石。在學習本章內容時,教師應該多從實際問題出發,引出變數,從具體到抽象的認識事物。培養學生良好的變化與對應意識,體會數形結合的思想。在教學過程中,應更加側重於理解和運用,在解決實際問題的同時,讓學習體會到數學的實用價值和樂趣。