高考數學函式求值域的方法大全
值域:數學名詞,函式經典定義中,因變數改變而改變的取值範圍叫做這個函式的值域,在函式現代定義中是指定義域中所有元素在某個對應法則下對應的所有的象所組成的集合。今天小編要與大家分享的訊息是:高考數學函式相關求值域的方法大全。具體內容如下:
方法一.觀察法
通過對函式定義域、性質的觀察,結合函式的解析式,求得函式的值域。
例1求函式y=3+√***2-3x***的值域。
點撥:根據算術平方根的性質,先求出√***2-3x***的值域。
解:由算術平方根的性質,知√***2-3x***≥0,故3+√***2-3x***≥3。∴函式的值域為{y∣y≥3}.
點評:算術平方根具有雙重非負性,即:***1***被開方數的非負性,***2***值的非負性。
本題通過直接觀察算術平方根的性質而獲解,這種方法對於一類函式的值域的求法,簡捷明瞭,不失為一種巧法。練習:求函式y=[x]***0≤x≤5***的值域。***答案:值域為:{0,1,2,3,4,5}***
方法二.反函式法
當函式的反函式存在時,則其反函式的定義域就是原函式的值域。
例2求函式y=***x+1***/***x+2***的值域。
點撥:先求出原函式的反函式,再求出其定義域。
解:顯然函式y=***x+1***/***x+2***的反函式為:x=***1-2y***/***y-1***,其定義域為y≠1的實數,故函式y的值域為{y∣y≠1,y∈R}。
點評:利用反函式法求原函式的定義域的前提條件是原函式存在反函式。
這種方法體現逆向思維的思想,是數學解題的重要方法之一。練習:求函式y=***10x+10-x***/***10x-10-x***的值域。***答案:函式的值域為{y∣y1}***
方法三.配方法
當所給函式是二次函式或可化為二次函式的複合函式時,可以利用配方法求函式值域
例3:求函式y=√***-x2+x+2***的值域。
點撥:將被開方數配方成完全平方數,利用二次函式的最值求。
解:由-x2+x+2≥0,可知函式的定義域為x∈[-1,2]。此時-x2+x+2=-***x-1/2***2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函式的值域是[0,3/2]
點評:求函式的值域不但要重視對應關係的應用,而且要特別注意定義域對值域的制約作用。
配方法是數學的一種重要的思想方法。練習:求函式y=2x-5+√15-4x的值域.***答案:值域為{y∣y≤3}***
方法四.判別式法
若可化為關於某變數的二次方程的分式函式或無理函式,可用判別式法求函式的值域。
例4求函式y=***2x2-2x+3***/***x2-x+1***的值域。
點撥:將原函式轉化為自變數的二次方程,應用二次方程根的判別式,從而確定出原函式的值域。
解:將上式化為***y-2***x2-***y-2***x+***y-3***=0*******當y≠2時,由Δ=***y-2***2-4***y-2***x+***y-3***≥0,解得:2當y=2時,方程*******無解。∴函式的值域為2點評:把函式關係化為二次方程F***x,y***=0,由於方程有實數解,故其判別式為非負數,可求得函式的值域。常適應於形如y=***ax2+bx+c***/***dx2+ex+f***及y=ax+b±√***cx2+dx+e***的函式。
練習:求函式y=1/***2x2-3x+1***的值域。***答案:值域為y≤-8或y>0***。
方法五.最值法
對於閉區間[a,b]上的連續函式y=f***x***,可求出y=f***x***在區間[a,b]內的極值,並與邊界值f***a***.f***b***作比較,求出函式的最值,可得到函式y的值域。
例5已知***2x2-x-3***/***3x2+x+1***≤0,且滿足x+y=1,求函式z=xy+3x的值域。
點撥:根據已知條件求出自變數x的取值範圍,將目標函式消元、配方,可求出函式的值域。
解:∵3x2+x+1>0,上述分式不等式與不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,將y=1-x代入z=xy+3x中,得z=-x2+4x***-1≤x≤3/2***,∴z=-***x-2***2+4且x∈[-1,3/2],函式z在區間[-1,3/2]上連續,故只需比較邊界的大小。當x=-1時,z=-5;當x=3/2時,z=15/4。∴函式z的值域為{z∣-5≤z≤15/4}。
點評:本題是將函式的值域問題轉化為函式的最值。對開區間,若存在最值,也可通過求出最值而獲得函式的值域。
練習:若√x為實數,則函式y=x2+3x-5的值域為******A.***-∞,+∞***B.[-7,+∞]C.[0,+∞***D.[-5,+∞***;***答案:D***。
方法六.圖象法
通過觀察函式的圖象,運用數形結合的方法得到函式的值域。
例6求函式y=∣x+1∣+√***x-2***2的值域。點撥:根據絕對值的意義,去掉符號後轉化為分段函式,作出其圖象。
解:原函式化為-2x+1***x≤1***y=3***-12***顯然函式值y≥3,所以,函式值域[3,+∞]。
點評:分段函式應注意函式的端點。利用函式的圖象求函式的值域,體現數形結合的思想。是解決問題的重要方法。求函式值域的方法較多,還適應通過不等式法、函式的單調性、換元法等方法求函式的值域。
方法七.單調法
利用函式在給定的區間上的單調遞增或單調遞減求值域。
例7求函式y=4x-√1-3x***x≤1/3***的值域。
點撥:由已知的函式是複合函式,即g***x***=-√1-3x,y=f***x***+g***x***,其定義域為x≤1/3,在此區間內分別討論函式的增減性,從而確定函式的值域。
解:設f***x***=4x,g***x***=-√1-3x,***x≤1/3***,易知它們在定義域內為增函式,從而y=f***x***+g***x***=4x-√1-3x在定義域為x≤1/3上也為增函式,而且y≤f***1/3***+g***1/3***=4/3,因此,所求的函式值域為{y|y≤4/3}。
點評:利用單調性求函式的值域,是在函式給定的區間上,或求出函式隱含的區間,結合函式的增減性,求出其函式在區間端點的函式值,進而可確定函式的值域。
練習:求函式y=3+√4-x的值域。***答案:{y|y≥3}***
方法八.換元法
以新變數代替函式式中的某些量,使函式轉化為以新變數為自變數的函式形式,進而求出值域。
例8求函式y=x-3+√2x+1的值域。
點撥:通過換元將原函式轉化為某個變數的二次函式,利用二次函式的最值,確定原函式的值域。
解:設t=√2x+1***t≥0***,則x=1/2***t2-1***。於是y=1/2***t2-1***-3+t=1/2***t+1***2-4≥1/2-4=-7/2.所以,原函式的值域為{y|y≥-7/2}。
點評:將無理函式或二次型的函式轉化為二次函式,通過求出二次函式的最值,從而確定出原函式的值域。這種解題的方法體現換元、化歸的思想方法。它的應用十分廣泛。
練習:求函式y=√x-1–x的值域。***答案:{y|y≤-3/4}
方法九.構造法
根據函式的結構特徵,賦予幾何圖形,數形結合。
例9求函式y=√x2+4x+5+√x2-4x+8的值域。
點撥:將原函式變形,構造平面圖形,由幾何知識,確定出函式的值域。
解:原函式變形為f***x***=√***x+2***2+1+√***2-x***2+22作一個長為4、寬為3的矩形ABCD,再切割成12個單位正方形。設HK=x,則ek=2-x,KF=2+x,AK=√***2-x***2+22,KC=√***x+2***2+1。由三角形三邊關係知,AK+KC≥AC=5。當A、K、C三點共線時取等號。∴原函式的值域為{y|y≥5}。
點評:對於形如函式y=√x2+a±√***c-x***2+b***a,b,c均為正數***,均可通過構造幾何圖形,由幾何的性質,直觀明瞭、方便簡捷。這是數形結合思想的體現。
練習:求函式y=√x2+9+√***5-x***2+4的值域。***答案:{y|y≥5√2}***
方法十.比例法
對於一類含條件的函式的值域的求法,可將條件轉化為比例式,代入目標函式,進而求出原函式的值域。
例10已知x,y∈R,且3x-4y-5=0,求函式z=x2+y2的值域。
點撥:將條件方程3x-4y-5=0轉化為比例式,設定引數,代入原函式。
解:由3x-4y-5=0變形得,***x3***/4=***y-1***/3=k***k為引數***∴x=3+4k,y=1+3k,∴z=x2+y2=***3+4k***2+***14+3k***2=***5k+3***2+1。當k=-3/5時,x=3/5,y=-4/5時,zmin=1。函式的值域為{z|z≥1}.
點評:本題是多元函式關係,一般含有約束條件,將條件轉化為比例式,通過設引數,可將原函式轉化為單函式的形式,這種解題方法體現諸多思想方法,具有一定的創新意識。
練習:已知x,y∈R,且滿足4x-y=0,求函式f***x,y***=2x2-y的值域。***答案:{f***x,y***|f***x,y***≥1}***
方法十一.利用多項式的除法
例11求函式y=***3x+2***/***x+1***的值域。
點撥:將原分式函式,利用長除法轉化為一個整式與一個分式之和。
解:y=***3x+2***/***x+1***=3-1/***x+1***。∵1/***x+1***≠0,故y≠3。∴函式y的值域為y≠3的一切實數。
點評:對於形如y=***ax+b***/***cx+d***的形式的函式均可利用這種方法。
練習:求函式y=***x2-1***/***x-1******x≠1***的值域。***答案:y≠2***
方法十二.不等式法
例12求函式Y=3x/***3x+1***的值域。
點撥:先求出原函式的反函式,根據自變數的取值範圍,構造不等式。
解:易求得原函式的反函式為y=log3[x/***1-x***],由對數函式的定義知x/***1-x***>0,1-x≠0。解得:01或y
- 高考數學函式求值域的方法大全
- 中班幼兒美術繪畫活動教案
- 研究生入黨志願書最新範文
- 大學生求職簡歷的作文自我評價
- 藥學專業個人好看的簡歷封面
- 關於月亮的心情說說_描寫月亮唯美的句子
- 描寫雨中牽牛花的作文
- 夢見撈很多死魚的預兆周公解夢
- 布藝手工製作變形托特包的方法
- 黨員幹部講奉獻有作為專題發言稿
- 孕婦缺鈣吃什麼好
- 什麼是工資集體協商
- 五年級下冊語文第十課預習教案
- 裝修的進度一覽表有什麼須知
- 湖南會計從業資格考試財經法規模擬試題及答案
- 儲蓄人生閱讀練習及答案
- 商場的經營模式
- 小學三年級作文我的媽媽
- 教師個人好看的簡歷封面背景
- 有關國慶節的來歷
- 康熙字典五行屬金的字
- 康熙字典五行屬木的字
- 康熙字典五行屬水的字
- 康熙字典五行屬火的字
- 康熙字典五行屬土的字