浙教版數學整式的乘除複習資料
中考大戰即將開始,對於同學們而言,想要考好數學現在正是拼命努力學習和複習的時候。那麼?下面是小編分享給大家的數學整式的乘除複習資料,希望大家喜歡!
數學整式的乘除複習資料
整式的乘除與因式分解
1.同底數冪的乘法
※同底數冪的乘法法則: ***m,n都是正數***是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:
①法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;
②指數是1時,不要誤以為沒有指數;
③不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;
④當三個或三個以上同底數冪相乘時,法則可推廣為***其中m、n、p均為正數***;
⑤公式還可以逆用:***m、n均為正整數***
2.冪的乘方與積的乘方
※1. 冪的乘方法則:***m,n都是正數***是冪的乘法法則為基礎推匯出來的,但兩者不能混淆.
※2. .
※3. 底數有負號時,運算時要注意,底數是a與***-a***時不是同底,但可以利用乘方法則化成同底,
如將***-a***3化成-a3
※4.底數有時形式不同,但可以化成相同。
※5.要注意區別***ab***n與***a+b***n意義是不同的,不要誤以為***a+b***n=an+bn***a、b均不為零***。
※6.積的乘方法則:積的乘方,等於把積每一個因式分別乘方,再把所得的冪相乘,即***n為正整數***。
※7.冪的乘方與積乘方法則均可逆向運用。
3. 整式的乘法
※***1***. 單項式乘法法則:單項式相乘,把它們的係數、相同字母分別相乘,對於只在一個單項式裡含有的字母,連同它的指數作為積的一個因式。
單項式乘法法則在運用時要注意以下幾點:
①積的係數等於各因式係數積,先確定符號,再計算絕對值。這時容易出現的錯誤的是,將係數相乘與指數相加混淆;
②相同字母相乘,運用同底數的乘法法則;
③只在一個單項式裡含有的字母,要連同它的指數作為積的一個因式;
④單項式乘法法則對於三個以上的單項式相乘同樣適用;
⑤單項式乘以單項式,結果仍是一個單項式。
※***2***.單項式與多項式相乘
單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
單項式與多項式相乘時要注意以下幾點:
①單項式與多項式相乘,積是一個多項式,其項數與多項式的項數相同;
②運算時要注意積的符號,多項式的每一項都包括它前面的符號;
③在混合運算時,要注意運算順序。
※***3***.多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
多項式與多項式相乘時要注意以下幾點:
①多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合併同類項之前,積的項數應等於原兩個多項式項數的積;
②多項式相乘的結果應注意合併同類項;
③對含有同一個字母的一次項係數是1的兩個一次二項式相乘,其二次項係數為1,一次項係數等於兩個因式中常數項的和,常數項是兩個因式中常數項的積。對於一次項係數不為1的兩個一次二項式***mx+a***和***nx+b***相乘可以得
4.平方差公式
¤1.平方差公式:兩數和與這兩數差的積,等於它們的平方差,
¤其結構特徵是:
①公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數;
②公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。
5.完全平方公式
¤1.完全平方公式:兩數和***或差***的平方,等於它們的平方和,加上***或減去***它們的積的2倍,
¤口決:首平方,尾平方,2倍乘積在中央;
¤2.結構特徵:
①公式左邊是二項式的完全平方;
②公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。
¤3.在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現這樣的錯誤。
添括號法則:添正不變號,添負各項變號,去括號法則同樣
6. 同底數冪的除法
※1. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 ***a≠0,m、n都是正數,且m>n***.
※2. 在應用時需要注意以下幾點:
①法則使用的前提條件是“同底數冪相除”而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即,如,***-2.50=1***,則00無意義.
③任何不等於0的數的-p次冪***p是正整數***,等於這個數的p的次冪的倒數,即*** a≠0,p是正整數***, 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的,如,
④運算要注意運算順序.
7.整式的除法
¤1.單項式除法單項式
單項式相除,把係數、同底數冪分別相除,作為商的因式,對於只在被除式裡含有的字母,則連同它的指數作為商的一個因式;
¤2.多項式除以單項式
多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。
8. 分解因式
※1. 把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.
※2. 因式分解與整式乘法是互逆關係.
因式分解與整式乘法的區別和聯絡:
***1***整式乘法是把幾個整式相乘,化為一個多項式;
***2***因式分解是把一個多項式化為幾個因式相乘.
中考數學複習方法
總結梳理,提煉方法。
複習的最後階段,對於知識點的總結梳理,應重視教材,立足基礎,在準確理解基本概念,掌握公式、法則、定理的實質及其基本運用的基礎上,弄清概念之間的聯絡與區別。對於題型的總結梳理,應擺脫盲目的題海戰術,對重點習題進行歸類,找出解題規律,要關注解題的思路、方法、技巧。如方案設計題型中有一類試題,不改變圖形面積把一個圖形剪拼成另一個指定圖形。總結髮現,這類題有三種類型,一類是剪下線的條數不限制進行拼接;一類是剪下線的條數有限制進行拼接;一類是給出若干小圖形拼接成固定圖形。梳理了題型就可以進一步探索解題規律。同時也可以換角度進行思考,如一個任意的三角形可以剪拼成平行四邊形或矩形,最少需幾條剪下線?聯想到任意四邊形可以剪拼成哪些特殊圖形,任意梯形可以剪拼成哪些特殊圖形等。做題時,要注重發現題與題之間的內在聯絡,通過比較,發現規律,做到觸類旁通。
反思錯題,提升能力。
在備考期間,要想降低錯誤率,除了進行及時修正、全面紮實複習之外,非常關鍵的一個環節就是反思錯題,具體做法是:將已複習過的內容進行“會診”,找到最薄弱部分,特別是對月考、模擬試卷出現的錯誤要進行認真分析,也可以將試卷進行重新剪貼、分類對比,從中發現自己複習中存在的共性問題。正確分析問題產生的原因,例如,是計算馬虎,還是法則使用不當;是審題不仔細,還是對試題中已知條件或所求結論理解有誤;是解題思路不對,還是定理應用出錯等等,消除某個薄弱環節比做一百道題更重要。應把這些做錯的習題和不懂不會的習題當成再次鍛鍊自己的機會,找到了問題產生的原因,也就找到了解題的最佳途徑。事實上,如果考前及時發現問題,並且及時糾正,就會越快地提高數學能力。對其中那些反覆出錯的問題可以考慮再做一遍,自己平時害怕的題、容易出錯的題要精做,以絕後患。並且要靜下心來,通過學習、回憶,而有所思,有所悟,便會有所發現、有所提高、有所創新,便能悟出道理、悟出規律。
中考數學複習策略
首先,審題時注意力要集中
思維應直接指向試題,力爭做到眼到、心到、手到。審題時,應弄清已知條件、所求結論,同時在短時間內彙集有關概念、公式、定理,用綜合法、或分析法、或兩頭湊的方法,探索解題途徑。特別注意已知條件所設的陷阱,仔細審題,認真分析是否該分類討論,以免丟解。
其次,在答題順序上,應逐題進行解答
要正確迅速地完成選擇題和填空題,有效利用時間,為順利完成中檔題和壓軸題奠定基礎。在逐題進行解答時,遇到一時解不出的題應先放下***別忘了做記號,以免落題***,把會解的題目都做完後,再回來把留下的疑難逐一解決。
第三,遇到平時沒見過的題目,不要慌,穩定好情緒
題目貌似異常,其實都出自原本。要冷靜回想它與平時見過的題目、書本中的知識有哪些關聯。要相信自己的功底,多方尋找思路,便能豁然得釋。切忌對著題發呆不敢下手,有時動筆做一做或者畫一畫,就圖形進行相應地分析,也就做出來了。儘可能解答一步是一步,不放過多得一分的機會。
第四,解綜合題時,應步步為營
穩紮穩打,否則前面錯了,後面即使方法對了,也得分甚少。
最後,注意認真檢查
如感覺某題答錯了,不能盲目去改,要十分冷靜地重新審題,仔細研究,確定此時思路正確,再動筆去改,因為此時易把正確的改錯了,儘量減少失誤。檢查在數學考試中尤為重要,它是減少失誤的最有效途徑。
1.初二數學整式的乘除與因式分解知識點彙編
2.初一下冊數學第二章整式的乘法試題及答案
3.初中數學獲獎手抄報圖片
4.初中數學中考複習教案有哪些
5.浙教版八年級上冊數學複習資料有哪些