上學期初三年級期中考試試題
不好好學習數學,在中考怎麼取的好的成績哦,今天小編就給大家參考一下九年級數學,有需要的就來看看吧
初三年級數學上期中試題
一.選擇題***共12小題,滿分48分***
1.下列美麗的圖案中,既是軸對稱圖形又是中心對稱圖形的個數有*** ***
A.1個 B.2個 C.3個 D.4個
2.如圖,將△AOB繞點O按逆時針方向旋轉55°後得到△A′OB′,若∠AOB=15°,則∠AOB′的度數是*** ***
A.25° B.30° C.35° D.40°
3.下列函式中,二次函式的是*** ***
A.y=2x2+1 B.y=2x+1
C.y= D.y=x2﹣***x﹣1***2
4.將拋物線y=﹣ x2向左平移2個單位長度,再向下平移3個單位長度,則平移後所得到的拋物線解析式是*** ***
A. B.
C. D.
5.拋物線y=ax2+bx+3***a≠0***過A***4,4***,B***2,m***兩點,點B到拋物線對稱軸的距離記為d,滿足0
A.m≤2或m≥3 B.m≤3或m≥4 C.2
6.圖示為拋物線y=ax2+bx+c的一部分,其對稱軸為直線x=2,若其與x軸的一交點為B***6,0***,則由圖象可知,不等式ax2+bx+c>0的解集是*** ***
A.x>6 B.06
7.已知二次函式y=ax2+bx+c中,函式y與自變數x的部分對應值如表,則方程ax2+bx+c=0的一個解的範圍是*** ***
x 6.17 6.18 6.19 6.20
y ﹣0.03 ﹣0.01 0.02 0.04
A.﹣0.01
C.6.18
8.拋物線y=﹣x2+bx+c上部分點的橫座標x,縱座標y的對應值如下表所示:]
x … ﹣2 ﹣1 0 1 2 …
y … 0 4 6 6 4 …
從上表可知,下列說法中,錯誤的是*** ***
A.拋物線於x軸的一個交點座標為***﹣2,0***
B.拋物線與y軸的交點座標為***0,6***
C.拋物線的對稱軸是直線x=0
D.拋物線在對稱軸左側部分是上升的
9.如圖,⊙O的半徑OA=6,以A為圓心,OA為半徑的弧交⊙O於B、C點,則BC=*** ***
A. B. C. D.
10.關於x的方程2x2+ax+b=0有兩個不相等的實數根,且較小的根為2,則下列結論:
①2a+b<0;②ab<0;③關於x的方程2x2+ax+b+2=0有兩個不相等的實數根;
④拋物線y=2x2+ax+b+2的頂點在第四象限.其中正確的結論有*** ***
A.①② B.①②③ C.①②④ D.①②③④
11.如圖,函式y=ax2﹣2x+1和y=ax﹣a***a是常數,且a≠0***在同一平面直角座標系的圖象可能是*** ***
A. B.
C. D.
12.如圖,二次函式y=ax2+bx+c***a≠0***的圖 象與x軸交於點A、B兩點,與y軸交於點C,對稱軸為直線x=﹣1,點B的座標為***1,0***,則下列結論:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正確的結論有*** ***個.
A.1個 B.2個 C.3個 D.4個
二.填空題***共6小題,滿分24分,每小題4分***
13.二次函式y=﹣x2﹣2x+3的最大值是 .
14.已知拋物線y=x2﹣***k﹣1***x﹣3k﹣2與x軸交於A ***α,0***,B***β,0***兩點,且α2+β2=17,則k= .
15.若二次函式y=x2+2m﹣1的圖象經過原點,則m的值是 .
16.將點P***﹣1,3***繞原點順時針旋轉180°後坐標變為 .
17.已知⊙O的半徑為10cm,AB,CD是⊙O的兩條弦,AB∥CD,AB=16cm,CD=12cm,則弦AB和CD之間的距離是 cm.
18.“a是 實數,|a|≥0”這一事件是 事件.
三.解答題***共7小題,滿分64分***
19.***10分***已知二次函式y1=x2﹣2x﹣3的圖象與x軸交於A、B兩點***A在B的左側***,與y軸交於點C,頂點為D.
***1***求出點A、B的座標,並畫出該二次函式的圖象***不需要列表,但是要在圖中標出A、B、C、D***;
***2***設一次函式y2=kx+b的圖象經過B、D兩點,觀察圖象回答:
①當 時,y1、y2都隨x的增大而增大;
②當 時,y1>y2.
20.***10分***如圖,△ABC中,∠B=15°,∠ACB=25°,AB=4cm,△ABC逆時針旋轉一定角度後與△ADE重合,且點C恰好成為AD的中點.
***1***指出旋轉中心,並求出旋轉的度數;
***2***求出∠BAE的度數和AE的長.
21.***10分***如圖,在平面直角座標系中,Rt△ABC的三個頂點分別是A***﹣4,2***、B***0,4***、C***0,2***,
***1***畫出△ABC關於點C成中心對稱的△A1B1C;平移△ABC,若點A的對應點A2的座標為***0,﹣4***,畫出平移後對應的△A2B2C2;
***2***△A1B1C和△A2B2C2關於某一點成中心對稱,則對稱中心的座標為 .
22.***11分***如圖,在平面直角座標系中,點O為座標原點,已知△ABC三個定點座標分別為A***﹣4,1***,B***﹣3,3***,C***﹣1,2***.
***1***畫出△ABC關於x軸對稱的△A1B1C1,點A,B,C的對稱點分別是點A1、B1、C1,直接寫出點A1,B1,C1的座標:A1*** , ***,B1*** , ***,C1*** , ***;
***2***畫出點C關於y軸的對稱點C2,連線C1C2,CC2,C1C,並直接寫出△CC1C2的面積是 .
23.***11分***如圖,CD為⊙O的直徑,CD⊥AB,垂足為點F,AO⊥BC,垂足為點E,CE=2.
***1***求AB的長;
***2***求⊙O的半徑.
24.***12分***如圖,在△ABC中,∠ACB=90°,O是邊AC上一點,以O為圓心,以OA為半徑的圓分別交AB、AC於點E、D,在BC的延長線上取點F,使得BF=EF.
***1***判斷直線EF與⊙O的位置關係,並說明理由;
***2***若∠A=30°,求證:DG= DA;
***3***若∠A=30°,且圖中陰影部分的面積等於2 ,求⊙O的半徑的長.
25.拋物線y=﹣ x2﹣ x+ 與x軸 交於點A,B***點A在點B的左邊***,與y軸交於點C,點D是該拋物線的頂點.
***1***如圖1,連線CD,求線段CD的長;
***2***如圖2,點P是直線AC上方拋物線上一點,PF⊥x軸於點F,PF與線段AC交於點E;將線段OB沿x軸左右平移,線段OB的對應線段是O1B1,當PE+ EC的值最大時,求四邊形PO1B1C周長的最小值,並求出對應的點O1的座標;
***3***如圖3,點H是線段AB的中點,連線CH,將△OBC沿直線CH翻折至△O2B2C的位置,再將△O2B2C繞點B2旋轉一週,在旋轉過程中,點O2,C的對應點分別是點O3,C1,直線O3C1分別與 直線AC,x軸交於點M,N.那麼,在△O2B2C的整個旋轉過程中,是否存在恰當的位置,使△AMN是以MN為腰的等腰三角形?若存在,請直接寫出所有符合條件的線段O2M的長;若不存在,請說明理由.
參考答案
一.選擇題
1. B.2. D.3. A.4. C.5. B.6. D.
7. C.8.C 9. A.10. A.11. B.12. C.
二.填空題
13. 4.
14. 2.
15. .
16.***1,﹣3***.
17. 2或14.
18.必然.
三.解答題
19.解:***1***令y1=0,得x2﹣2x﹣3=0,解得x1=3,x2=﹣1,
∴A***﹣1,0***,B***3,0***,
令x=0,得y=﹣3,
∴C***0,﹣3***,
﹣ =﹣ =1,
= =﹣4,
∴D***1,﹣4***;
***2***①由題意得,當x>1時y隨x的增大而增大;
②當x<1或x>3時,y1>y2.
故答案為x>1,x<1或x>3.
20.解:***1***∠BAC=180°﹣∠B﹣∠ACB=180°﹣15°﹣25°=140°,
即∠BAD=140°,
所以旋轉中心為點A,旋轉的度數為140°;
***2***∵△ABC逆時針旋轉一定角度後與△ADE重合,
∴∠EAD=∠BAC=140°,AE=AC,AD=AB=4
∴∠BAE=360°﹣140°﹣140°=80°,
∵點C恰好成為AD的中點,
∴AC= AD=2,
∴AE=2.
21.解:***1***△A1B1C如圖所示,
△A2B2C2如圖所示;
***2***如圖,對稱中心為***2,﹣1***.
22.解:***1***如圖所示,△A1B1C1即為所求.
A1***﹣4,﹣1***B1***﹣3,﹣3***,C1***﹣1,﹣2***,
故答案為:﹣4、﹣1、﹣3、﹣3、﹣1、﹣2;
***2***如圖所示,△CC1C2的面積是 ×2×4=4,
故答案為:4.
23.解:***1***∵CD⊥AB,AO⊥BC
∴∠AFO=∠CEO=90°,
在△AOF和△COE中,
,
∴△AOF≌△COE,
∴CE=AF,
∵CE=2,
∴AF=2,
∵CD是⊙O的直徑,CD⊥AB,
∴ ,
∴AB=4.
***2***∵AO是⊙O的半徑,AO⊥BC
∴CE=BE=2,
∵AB=4,
∴ ,
∵∠AEB=90°,
∴∠A=30°,
又∵∠AFO=90°,
∴cosA= = = ,
∴ ,即⊙O的半徑是 .
24.解:***1***連線 OE,
∵OA=OE,
∴∠A=∠AEO,
∵BF=EF,
∴∠B=∠BEF,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠AEO+∠BEF=90°,
∴∠OEG=90°,
∴EF是⊙O的切線;
***2***∵∠AED=90°,∠A=30°,
∴ED= AD,
∵∠A+∠B=90°,
∴∠B=∠BEF=60°,
∵∠BEF+∠DEG=90°,
∴∠DEG=30°,
∵∠ADE+∠A=90°,
∴∠ADE=60°,
∵∠ADE=∠EGD+∠DEG,
∴∠DGE=30°,
∴∠DEG=∠DGE,
∴DG=DE,
∴DG= DA;
***3***∵AD是⊙O的直徑,
∴∠AED=90°,
∵∠A=30°,
∴∠EOD=60°,
∴∠EGO=30°,
∵陰影部分的面積= ×r× r﹣ =2 ﹣ π.
解得:r2=4,即r=2,
即⊙O的半徑的長為2.
25.解:***1***如圖1,過點D作DK⊥y軸於K,
當x=0時,y= ,
∴C***0, ***,
y=﹣ x2﹣ x+ =﹣ ***x+ ***2+ ,
∴D***﹣ , ***,
∴DK= ,CK= ﹣ = ,
∴CD= = = ;
***2***在y=﹣ x2﹣ x+ 中,令 y=0,則﹣ x2﹣ x+ =0,
解得:x1=﹣3 ,x2= ,
∴A***﹣3 ,0***,B*** ,0***,
∵C***0, ***,
易得直線AC的解析式為:y= ,
設E***x, ***,P***x,﹣ x2﹣ x+ ***,
∴PF=﹣ x2﹣ x+ ,EF= ,
Rt△ACO中,AO=3 ,OC= ,
∴AC=2 ,
∴∠CAO=30°,
∴AE=2EF= ,
∴PE+ EC=***﹣ x2﹣ x+ ***﹣*** x+ ***+ ***AC﹣AE***,
=﹣ ﹣ x+ [2 ﹣*** ***],
=﹣ ﹣ x﹣ x,
=﹣ ***x+2 ***2+ ,***5分***
∴當PE+ EC的值最大時,x=﹣2 ,此時P***﹣2 , ***,***6分***
∴PC=2 ,
∵O1B1=OB= ,
∴要使四邊形PO1B1C周長的最小,即PO1+B1C的值最小,
如圖2,將點P向右平移 個單位長度得點P1***﹣ , ***,連線P1B1,則PO1=P1B1,
再作點P1關於x軸的對稱點P2***﹣ ,﹣ ***,則P1B1=P2B1,
∴PO1+B1C=P2B1+B1C,
∴連線P2C與x軸的交點即為使PO1+B1C的值最小時的點B1,
∴B1***﹣ ,0***,
將B1向左平移 個單位長度即得點O1,
此時PO1+B1C=P2C= = ,
對應的點O1的座標為***﹣ ,0***,***7分***
∴四邊形PO1B1C周長的最小 值為 +3 ;***8分***
***3***O2M的長度為 或 或2 + 或2 .***12分***
理由是:如圖3,∵H是AB的中點,
∴OH= ,
∵OC= ,
∴CH=BC=2 ,
∴∠HCO=∠BCO=30°,
∵∠ACO=60°,
∴將CO沿CH對摺後落在直線AC上,即O2在AC上,
∴∠B2CA=∠CAB=30°,
∴B2C∥AB,
∴B2***﹣2 , ***,
①如圖4,AN=MN,
∴∠MAN=∠AMN=30°=∠O2B2O3,
由旋轉得:∠CB2C1=∠O2B2O3=30°,B2C=B2C1,
∴∠B2CC1=∠B2C1C=75°,
過C1作C1E⊥B2C於E,
∵B2C=B2C1=2 ,
∴ =B2O2,B2E= ,
∵∠O2MB2=∠B2MO3=75°=∠B2CC1,
∠B2O2M=∠C1EC=90°,
∴△C1EC≌△B2O2M,
∴O2M=CE=B2C﹣B2E=2 ﹣ ;
②如圖5,AM=MN,此時M與C重合,O2M=O2C= ,
③如圖6,AM=MN,
∵B2C=B2C1=2 =B2H,即N和H、C1重合,
∴∠CAO=∠AHM=∠MHO2=30°,
∴O2M= AO2= ;
④如圖7,AN=MN,過C1作C1E⊥AC於E,
∴∠NMA=∠NAM=30°,
∵∠O3C1B2=30°=∠O3MA,
∴C1B2∥AC,
∴∠C1B2O2=∠AO2B2=90°,
∵∠C1EC=90°,
∴四邊形C1EO2B2是矩形,
∴EO2=C1B2=2 , ,
∴EM= ,
∴O2M=EO2+EM=2 + ,
綜上所述,O2M的長是 或 或2 + 或2 .
數學九年級上冊期中模擬試卷
一.選擇題***共12小題,滿分48分***
1.下列美麗的圖案中,既是軸對稱圖形又是中心對稱圖形的個數有*** ***
A.1個 B.2個 C.3個 D.4個
2.如圖,將△AOB繞點O按逆時針方向旋轉55°後得到△A′OB′,若∠AOB=15°,則∠AOB′的度數是*** ***
A.25° B.30° C.35° D.40°
3.下列函式中,二次函式的是*** ***
A.y=2x2+1 B.y=2x+1
C.y= D.y=x2﹣***x﹣1***2
4.將拋物線y=﹣x2向左平移2個單位長度,再向下平移3個單位長度,則平移後所得到的拋物線解析式是*** ***
A. B.
C. D.
5.拋物線y=ax2+bx+3***a≠0***過A***4,4***,B***2,m***兩點,點B到拋物線對稱軸的距離記為d,滿足0
A.m≤2或m≥3 B.m≤3或m≥4 C.2
6.圖示為拋物線y=ax2+bx+c的一部分,其對稱軸為直線x=2,若其與x軸的一交點為B***6,0***,則由圖象可知,不等式ax2+bx+c>0的解集是*** ***
A.x>6 B.06
7.已知二次函式y=ax2+bx+c中,函式y與自變數x的部分對應值如表,則方程ax2+bx+c=0的一個解的範圍是*** ***
x 6.17 6.18 6.19 6.20
y ﹣0.03 ﹣0.01 0.02 0.04
A.﹣0.01
C.6.18
8.拋物線y=﹣x2+bx+c上部分點的橫座標x,縱座標y的對應值如下表所示
x … ﹣2 ﹣1 0 1 2 …
y … 0 4 6 6 4 …
從上表可知,下列說法中,錯誤的是*** ***
A.拋物線於x軸的一個交點座標為***﹣2,0***
B.拋物線與y軸的交點座標為***0,6***
C.拋物線的對稱軸是直線x=0
D.拋物線在對稱軸左側部分是上升的
9.如圖,⊙O的半徑OA=6,以A為圓心,OA為半徑的弧交⊙O於B、C點,則BC=*** ***
A. B. C. D.
10.關於x的方程2x2+ax+b=0有兩個不相等的實數根,且較小的根為2,則下列結論:
①2a+b<0;②ab<0;③關於x的方程2x2+ax+b+2=0有兩個不相等的實數根;
④拋物線y=2x2+ax+b+2的頂點在第四象限.其中正確的結論有*** ***
A.①② B.①②③ C.①②④ D.①②③④
11.如圖,函式y=ax2﹣2x+1和y=ax﹣a***a是常數,且a≠0***在同一平面直角座標系的圖象可能是*** ***
A. B.
C. D.
12.如圖,二次函式y=ax2+bx+c***a≠0***的圖象與x軸交於點A、B兩點,與y軸交於點C,對稱軸為直線x=﹣1,點B的座標為***1,0***,則下列結論:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正確的結論有*** ***個.
A.1個 B.2個 C.3個 D.4個
二.填空題***共6小題,滿分24分,每小題4分***
13.二次函式y=﹣x2﹣2x+3的最大值是 .
14.已知拋物線y=x2﹣***k﹣1***x﹣3k﹣2與x軸交於A ***α,0***,B***β,0***兩點,且α2+β2=17,則k= .
15.若二次函式y=x2+2m﹣1的圖象經過原點,則m的值是 .
16.將點P***﹣1,3***繞原點順時針旋轉180°後坐標變為 .
17.已知⊙O的半徑為10cm,AB,CD是⊙O的兩條弦,AB∥CD,AB=16cm,CD=12cm,則弦AB和CD之間的距離是 cm.
18.“a是實數,|a|≥0”這一事件是 事件.
三.解答題***共7小題,滿分64分***
19.***10分***已知二次函式y1=x2﹣2x﹣3的圖象與x軸交於A、B兩點***A在B的左側***,與y軸交於點C,頂點為D.
***1***求出點A、B的座標,並畫出該二次函式的圖象***不需要列表,但是要在圖中標出A、B、C、D***;
***2***設一次函式y2=kx+b的圖象經過B、D兩點,觀察圖象回答:
①當 時,y1、y2都隨x的增大而增大;
②當 時,y1>y2.
20.***10分***如圖,△ABC中,∠B=15°,∠ACB=25°,AB=4cm,△ABC逆時針旋轉一定角度後與△ADE重合,且點C恰好成為AD的中點.
***1***指出旋轉中心,並求出旋轉的度數;
***2***求出∠BAE的度數和AE的長.
21.***10分***如圖,在平面直角座標系中,Rt△ABC的三個頂點分別是A***﹣4,2***、B***0,4***、C***0,2***,
***1***畫出△ABC關於點C成中心對稱的△A1B1C;平移△ABC,若點A的對應點A2的座標為***0,﹣4***,畫出平移後對應的△A2B2C2;
***2***△A1B1C和△A2B2C2關於某一點成中心對稱,則對稱中心的座標為 .
22.***11分***如圖,在平面直角座標系中,點O為座標原點,已知△ABC三個定點座標分別為A***﹣4,1***,B***﹣3,3***,C***﹣1,2***.
***1***畫出△ABC關於x軸對稱的△A1B1C1,點A,B,C的對稱點分別是點A1、B1、C1,直接寫出點A1,B1,C1的座標:A1*** , ***,B1*** , ***,C1*** , ***;
***2***畫出點C關於y軸的對稱點C2,連線C1C2,CC2,C1C,並直接寫出△CC1C2的面積是 .
23.***11分***如圖,CD為⊙O的直徑,CD⊥AB,垂足為點F,AO⊥BC,垂足為點E,CE=2.
***1***求AB的長;
***2***求⊙O的半徑.
24.***12分***如圖,在△ABC中,∠ACB=90°,O是邊AC上一點,以O為圓心,以OA為半徑的圓分別交AB、AC於點E、D,在BC的延長線上取點F,使得BF=EF.
***1***判斷直線EF與⊙O的位置關係,並說明理由;
***2***若∠A=30°,求證:DG=DA;
***3***若∠A=30°,且圖中陰影部分的面積等於2,求⊙O的半徑的長.
25.拋物線y=﹣x2﹣x+與x軸交於點A,B***點A在點B的左邊***,與y軸交於點C,點D是該拋物線的頂點.
***1***如圖1,連線CD,求線段CD的長;
***2***如圖2,點P是直線AC上方拋物線上一點,PF⊥x軸於點F,PF與線段AC交於點E;將線段OB沿x軸左右平移,線段OB的對應線段是O1B1,當PE+EC的值最大時,求四邊形PO1B1C周長的最小值,並求出對應的點O1的座標;[來源:學#科#網]
***3***如圖3,點H是線段AB的中點,連線CH,將△OBC沿直線CH翻折至△O2B2C的位置,再將△O2B2C繞點B2旋轉一週,在旋轉過程中,點O2,C的對應點分別是點O3,C1,直線O3C1分別與直線AC,x軸交於點M,N.那麼,在△O2B2C的整個旋轉過程中,是否存在恰當的位置,使△AMN是以MN為腰的等腰三角形?若存在,請直接寫出所有符合條件的線段O2M的長;若不存在,請說明理由.
參考答案
一.選擇題
1. B.2. D.3. A.4. C.5. B.6. D.
7. C.8.C 9. A.10. A.11. B.12. C.
二.填空題
13. 4.
三.解答題
19.解:***1***令y1=0,得x2﹣2x﹣3=0,解得x1=3,x2=﹣1,
∴A***﹣1,0***,B***3,0***,
令x=0,得y=﹣3,
∴C***0,﹣3***,
﹣=﹣=1,
==﹣4,
∴D***1,﹣4***;
***2***①由題意得,當x>1時y隨x的增大而增大;
②當x<1或x>3時,y1>y2.
故答案為x>1,x<1或x>3.
20.解:***1***∠BAC=180°﹣∠B﹣∠ACB=180°﹣15°﹣25°=140°,
即∠BAD=140°,
所以旋轉中心為點A,旋轉的度數為140°;
***2***∵△ABC逆時針旋轉一定角度後與△ADE重合,
∴∠EAD=∠BAC=140°,AE=AC,AD=AB=4
∴∠BAE=360°﹣140°﹣140°=80°,
∵點C恰好成為AD的中點,
∴AC=AD=2,
∴AE=2.
21.解:***1***△A1B1C如圖所示,
△A2B2C2如圖所示;
***2***如圖,對稱中心為***2,﹣1***.
22.解:***1***如圖所示,△A1B1C1即為所求.
A1***﹣4,﹣1***B1***﹣3,﹣3***,C1***﹣1,﹣2***,
故答案為:﹣4、﹣1、﹣3、﹣3、﹣1、﹣2;
***2***如圖所示,△CC1C2的面積是×2×4=4,
故答案為:4.
23.解:***1***∵CD⊥AB,AO⊥BC
∴∠AFO=∠CEO=90°,
在△AOF和△COE中,
,
∴△AOF≌△COE,
∴CE=AF,
∵CE=2,
∴AF=2,
∵CD是⊙O的直徑,CD⊥AB,
∴,
∴AB=4.
***2***∵AO是⊙O的半徑,AO⊥BC
∴CE=BE=2,
∵AB=4,
∴,
∵∠AEB=90°,
∴∠A=30°,
又∵∠AFO=90°,
∴cosA===,
∴,即⊙O的半徑是.
24.解:***1***連線OE,
∵OA=OE,
∴∠A=∠AEO,
∵BF=EF,
∴∠B=∠BEF,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠AEO+∠BEF=90°,
∴∠OEG=90°,
∴EF是⊙O的切線;
***2***∵∠AED=90°,∠A=30°,
∴ED=AD,
∵∠A+∠B=90°,
∴∠B=∠BEF=60°,
∵∠BEF+∠DEG=90°,
∴∠DEG=30°,
∵∠ADE+∠A=90°,
∴∠ADE=60°,
∵∠ADE=∠EGD+∠DEG,
∴∠DGE=30°,
∴∠DEG=∠DGE,
∴DG=DE,
∴DG=DA;
***3***∵AD是⊙O的直徑,
∴∠AED=90°,
∵∠A=30°,
∴∠EOD=60°,
∴∠EGO=30°,
∵陰影部分的面積=×r×r﹣=2﹣π.
解得:r2=4,即r=2,
即⊙O的半徑的長為2.
25.解:***1***如圖1,過點D作DK⊥y軸於K,
當x=0時,y=,
∴C***0,***,
y=﹣x2﹣x+=﹣***x+***2+,
∴D***﹣,***,
∴DK=,CK=﹣=,
∴CD===;
***2***在y=﹣x2﹣x+中,令y=0,則﹣x2﹣x+=0,
解得:x1=﹣3,x2=,
∴A***﹣3,0***,B***,0***,
∵C***0,***,
易得直線AC的解析式為:y=,
設E***x,***,P***x,﹣x2﹣x+***,
∴PF=﹣x2﹣x+,EF=,
Rt△ACO中,AO=3,OC=,
∴AC=2,
∴∠CAO=30°,
∴AE=2EF=,
∴PE+EC=***﹣x2﹣x+***﹣***x+***+***AC﹣AE***,
=﹣﹣x+ [2﹣******],
=﹣﹣x﹣x,
=﹣***x+2***2+,***5分***
∴當PE+EC的值最大時,x=﹣2,此時P***﹣2,***,***6分***
∴PC=2,
∵O1B1=OB=,
∴要使四邊形PO1B1C周長的最小,即PO1+B1C的值最小,
如圖2,將點P向右平移個單位長度得點P1***﹣,***,連線P1B1,則PO1=P1B1,
再作點P1關於x軸的對稱點P2***﹣,﹣***,則P1B1=P2B1,
∴PO1+B1C=P2B1+B1C,
∴連線P2C與x軸的交點即為使PO1+B1C的值最小時的點B1,
∴B1***﹣,0***,
將B1向左平移個單位長度即得點O1,
此時PO1+B1C=P2C==,
對應的點O1的座標為***﹣,0***,***7分***
∴四邊形PO1B1C周長的最小值為+3;***8分***
***3***O2M的長度為或或2+或2.***12分***
理由是:如圖3,∵H是AB的中點,
∴OH=,
∵OC=,
∴CH=BC=2,
∴∠HCO=∠BCO=30°,
∵∠ACO=60°,
∴將CO沿CH對摺後落在直線AC上,即O2在AC上,
∴∠B2CA=∠CAB=30°,
∴B2C∥AB,
∴B2***﹣2,***,
①如圖4,AN=MN,
∴∠MAN=∠AMN=30°=∠O2B2O3,
由旋轉得:∠CB2C1=∠O2B2O3=30°,B2C=B2C1,
∴∠B2CC1=∠B2C1C=75°,
過C1作C1E⊥B2C於E,
∵B2C=B2C1=2,
∴=B2O2,B2E=,
∵∠O2MB2=∠B2MO3=75°=∠B2CC1,
∠B2O2M=∠C1EC=90°,
∴△C1EC≌△B2O2M,
∴O2M=CE=B2C﹣B2E=2﹣;
②如圖5,AM=MN,此時M與C重合,O2M=O2C=,
③如圖6,AM=MN,
∵B2C=B2C1=2=B2H,即N和H、C1重合,
∴∠CAO=∠AHM=∠MHO2=30°,
∴O2M=AO2=;
④如圖7,AN=MN,過C1作C1E⊥AC於E,
∴∠NMA=∠NAM=30°,
∵∠O3C1B2=30°=∠O3MA,
∴C1B2∥AC,
∴∠C1B2O2=∠AO2B2=90°,
∵∠C1EC=90°,
∴四邊形C1EO2B2是矩形,
∴EO2=C1B2=2,,
∴EM=,
∴O2M=EO2+EM=2+,
綜上所述,O2M的長是或或2+或2.
九年級數學上冊期中試題參考
一.選擇題***共10小題,滿分30分***
1.下面給出的是一些產品的圖案,從幾何圖形的角度看,這些圖案既是中心對稱圖形又是軸對稱圖形的是*** ***
A. B.
C. D.
2.點A***a,3***與點B***﹣4,b***關於原點對稱,則a+b=*** ***
A.﹣1 B.4 C.﹣4 D.1
3.用配方法方程x2+6x﹣5=0時,變形正確的方程為*** ***
A.***x+3***2=14 B.***x﹣3***2=14 C.***x+6***2=4 D.***x﹣6***2=4
4.若α,β是一元二次方程3x2+2x﹣9=0的兩根,則+的值是*** ***
A. B.﹣ C.﹣ D.
5.將拋物線y=x2﹣6x+21向左平移2個單位後,得到新拋物線的解析式為*** ***
A.y=***x﹣8***2+5 B.y=***x﹣4***2+5
C.y=***x﹣8***2+3 D.y=***x﹣4***2+3
6.在拋物線y=ax2﹣2ax﹣7上有A***﹣4,y1***、B***2,y2***、C***3,y3***三點,若拋物線開口向下,則y1、y2和y3的大小關係為*** ***
A.y1
7.設A***﹣2,y1***,B***1,y2***,C***2,y3***是拋物線y=﹣x2﹣2x+2上的三點,則y1,y2,y3的大小關係為*** ***
A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y2
8.如圖,△ABC中,BC=8,AD是中線,將△ADC沿AD摺疊至△ADC′,發現CD與摺痕的夾角是60°,則點B到C′的距離是*** ***
A.4 B. C. D.3
9.一個兩位數,個位上的數字比十位上的數字小4,且個位數字與十位數字的平方和比這個兩位數小4,若設個位數字為a,則可列方程為*** ***
A.a2***a﹣4***2=10***a﹣4***+a﹣4
B.a2+***a+4***2=10a+a﹣4﹣4
C.a2+***a+4***2=10***a+4***+a﹣4
D.a2+***a﹣4***2=10a+***a﹣4***﹣4
10.已知兩點A***﹣5,y1***,B***3,y2***均在拋物線y=ax2+bx+c***a≠0***上,點C***x0,y0***是該拋物線的頂點.若y1
A.x0>﹣1 B.x0>﹣5 C.x0<﹣1 D.﹣2
二.填空題***共6小題,滿分18分,每小題3分***
11.若一元二次方程ax2﹣bx﹣2018=0有一個根為x=﹣1,則a+b= .
12.如圖,把△ABC繞C點順時針旋轉35°,得到△A′B′C,A′B′交AC於點D,若∠A′DC=90°,則∠A= °.
13.若二次函式y=***2﹣m***x|m|﹣3 的圖象開口向下,則m的值為 .
14.若關於x的一元二次方程***k﹣1***x2+6x+3=0有實數根,則實數k的取值範圍為 .
15.從地面豎直向上丟擲一小球,小球的高度h***單位:米***與小球運動時間t***單位:秒***的函式關係式是h=9.8t﹣4.9t2.若小球的高度為4.9米,則小球的運動時間為 .
16.如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上兩點,且∠DAE=45°,將△ABE繞點A順時針旋轉90°後,得到△ACF,連線DF,下列結論中:①∠DAF=45°②△ABE≌△ACD③AD平分∠EDF④BE2+DC2=DE2;正確的有 ***填序號***
三.解答題***共9小題,滿分74分***
17.解方程:x2﹣4x﹣5=0.
18.如圖,畫出△ABC關於原點O對稱的△A1B1C1,並寫出點A1,B1,C1的座標.
19.淮北市某中學七年級一位同學不幸得了重病,牽動了全校師生的心,該校開展了“獻愛心”捐款活動.第一天收到捐款10 000元,第三天收到捐款12 100元.
***1***如果第二天、第三天收到捐款的增長率相同,求捐款增長率;
***2***按照***1***中收到捐款的增長速度,第四天該校能收到多少捐款?
20.如圖,四邊形ABCD是邊長為1的正方形,點E,F分別在邊AB和BC上,△DCM是由△ADE逆時針旋轉得到的圖形.
***Ⅰ***旋轉中心是點 .
***Ⅱ***旋轉角是 度,∠EDM= 度.
***Ⅲ***若∠EDF=45°,求證△EDF≌△MDF,並求此時△BEF的周長.
21.從甲、乙兩題中選做一題.如果兩題都做,只以甲題計分.
題甲:若關於x一元二次方程x2﹣2***2﹣k***x+k2+12=0有實數根a,β.
***1***求實數k的取值範圍;
***2***設,求t的最小值.
題乙:如圖所示,在矩形ABCD中,P是BC邊上一點,連線DP並延長,交AB的延長線於點Q.
***1***若=,求的值;
***2***若點P為BC邊上的任意一點,求證:﹣=.
我選做的是 題.
22.小明投資銷售一種進價為每件20元的護眼檯燈.銷售過程中發現,每月銷售量y***件***與銷售單價x***元***之間的關係可近似的看作一次函式:y=﹣10x+500,在銷售過程中銷售單價不低於成本價,而每件的利潤不高於成本價的60%.
***1***設小明每月獲得利潤為w***元***,求每月獲得利潤w***元***與銷售單價x***元***之間的函式關係式,並確定自變數x的取值範圍.
***2***當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?
***3***如果小明想要每月獲得的利潤不低於2000元,那麼小明每月的成本最少需要多少元?***成本=進價×銷售量***
23.***12分***如圖,拋物線y=x2﹣2x﹣3與x軸交於A、B兩點.
***1***拋物線與x軸的交點座標為 ;
***2***設***1***中的拋物線上有一個動點P,當點P在該拋物線上滑動到什麼位置時,滿足S△PAB=6,並求出此時P點的座標.
24.如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸於點C.A***1,1***、B***3,1***.動點P從O點出發,沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直於直線OA,垂足為Q,設P點移動的時間為t秒***0
***1***求經過O、A、B三點的拋物線解析式;
***2***求S與t的函式關係式;
***3***將△OPQ繞著點P順時針旋轉90°,是否存t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.
25.已知:二次函式y=ax2﹣2x+c的圖象與x於A、B,A在點B的左側***,與y軸交於點C,對稱軸是直線x=1,平移一個單位後經過座標原點O
***1***求這個二次函式的解析式;
***2***直線交y軸於D點,E為拋物線頂點.若∠DBC=α,∠CBE=β,求α﹣β的值;
***3***在***2***問的前提下,P為拋物線對稱軸上一點,且滿足PA=PC,在y軸右側的拋物線上是否存在點M,使得△BDM的面積等於PA2?若存在,求出點M的座標;若不存在,請說明理由.
參考答案
一.選擇題
1.下面給出的是一些產品的圖案,從幾何圖形的角度看,這些圖案既是中心對稱圖形又是軸對稱圖形的是*** ***
A. B.
C. D.
【解答】解:A、不是軸對稱圖形,也不是中心對稱圖形;
B、不是軸對稱圖形,也不是中心對稱圖形;
C、是軸對稱圖形,也是中心對稱圖形;
D、不是軸對稱圖形,是中心對稱圖形.
故選:C.
2.點A***a,3***與點B***﹣4,b***關於原點對稱,則a+b=*** ***
A.﹣1 B.4 C.﹣4 D.1
【解答】解:∵點A***a,3***與點B***﹣4,b***關於原點對稱,
∴a=4,b=﹣3,
∴a+b=1,
故選:D.
3.用配方法方程x2+6x﹣5=0時,變形正確的方程為*** ***
A.***x+3***2=14 B.***x﹣3***2=14 C.***x+6***2=4 D.***x﹣6***2=4
【解答】解:方程移項得:x2+6x=5,
配方得:x2+6x+9=14,即***x+3***2=14,
故選:A.
4.若α,β是一元二次方程3x2+2x﹣9=0的兩根,則+的值是*** ***
A. B.﹣ C.﹣ D.
【解答】解:∵α、β是一元二次方程3x2+2x﹣9=0的兩根,
∴α+β=﹣,αβ=﹣3,
∴+====﹣.
故選:C.
5.將拋物線y=x2﹣6x+21向左平移2個單位後,得到新拋物線的解析式為*** ***
A.y=***x﹣8***2+5 B.y=***x﹣4***2+5
C.y=***x﹣8***2+3 D.y=***x﹣4***2+3
【解答】解:y=x2﹣6x+21
=***x2﹣12x***+21
= [***x﹣6***2﹣36]+21
=***x﹣6***2+3,
故y=***x﹣6***2+3,向左平移2個單位後,
得到新拋物線的解析式為:y=***x﹣4***2+3.
故選:D.
6.在拋物線y=ax2﹣2ax﹣7上有A***﹣4,y1***、B***2,y2***、C***3,y3***三點,若拋物線開口向下,則y1、y2和y3的大小關係為*** ***
A.y1
【解答】解:
∵A***﹣4,y1***、B***2,y2***、C***3,y3***三點在拋物線y=ax2﹣2ax﹣7上,
∴y1=16a+8a﹣7=24a﹣7,y2=4a﹣4a﹣7=﹣7,y3=9a﹣6a﹣7=3a﹣7,
∵拋物線開口向下,
∴a<0,
∴24a<3a<0,
∴24a﹣7<3a﹣7<﹣7,
∴y1
故選:A.
7.設A***﹣2,y1***,B***1,y2***,C***2,y3***是拋物線y=﹣x2﹣2x+2上的三點,則y1,y2,y3的大小關係為*** ***
A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y2
【解答】解:
∵A***﹣2,y1***,B***1,y2***,C***2,y3***是拋物線y=﹣x2﹣2x+2上的三點,
∴y1=﹣***﹣2***2﹣2×***﹣2***+2=2,y2=﹣1﹣2+2=﹣1,y3=﹣22﹣2×2+2=﹣6,
∴y1>y2>y3,
故選:A.
8.如圖,△ABC中,BC=8,AD是中線,將△ADC沿AD摺疊至△ADC′,發現CD與摺痕的夾角是60°,則點B到C′的距離是*** ***
A.4 B. C. D.3
【解答】解:∵△ABC中,BC=8,AD是中線,
∴BD=DC=4,
∵將△ADC沿AD摺疊至△ADC′,發現CD與摺痕的夾角是60°,
∴∠C′DA=∠ADC=60°,DC=DC′,
∴∠C′DB=60°,
∴△BDC′是等邊三角形,
∴BC′=BD=DC′=4.
故選:A.
9.一個兩位數,個位上的數字比十位上的數字小4,且個位數字與十位數字的平方和比這個兩位數小4,若設個位數字為a,則可列方程為*** ***
A.a2***a﹣4***2=10***a﹣4***+a﹣4
B.a2+***a+4***2=10a+a﹣4﹣4
C.a2+***a+4***2=10***a+4***+a﹣4
D.a2+***a﹣4***2=10a+***a﹣4***﹣4
【解答】解:依題意得:十位數字為:a+4,這個數為:a+10***x+4***
這兩個數的平方和為:a2+***a+4***2,
∵兩數相差4,
∴a2+***a+4***2=10***a+4***+a﹣4.
故選:C.
10.已知兩點A***﹣5,y1***,B***3,y2***均在拋物線y=ax2+bx+c***a≠0***上,點C***x0,y0***是該拋物線的頂點.若y1
A.x0>﹣1 B.x0>﹣5 C.x0<﹣1 D.﹣2
【解答】解:∵點C***x0,y0***是該拋物線的頂點.且y1
∴a<0,x0﹣***﹣5***>|3﹣x0|,
∴x0>﹣1.
故選:A.
二.填空題***共6小題,滿分18分,每小題3分***
11.若一元二次方程ax2﹣bx﹣2018=0有一個根為x=﹣1,則a+b= 2018 .
【解答】解:把x=﹣1代入方程有:
a+b﹣2018=0,
即a+b=2018.
故答案是:2018.
12.如圖,把△ABC繞C點順時針旋轉35°,得到△A′B′C,A′B′交AC於點D,若∠A′DC=90°,則∠A= 55 °.
【解答】解:∵三角形△ABC繞著點C時針旋轉35°,得到△AB′C′
∴∠ACA′=35°,∠A'DC=90°
∴∠A′=55°,
∵∠A的對應角是∠A′,即∠A=∠A′,
∴∠A=55°;
故答案為:55°.
13.若二次函式y=***2﹣m***x|m|﹣3 的圖象開口向下,則m的值為 5 .
【解答】解:
∵y=***2﹣m***x|m|﹣3 是二次函式,
∴|m|﹣3=2,解得m=5或m=﹣5,
∵拋物線圖象開口向下,
∴2﹣m<0,解得m>2,
∴m=5,
故答案為:5.
14.若關於x的一元二次方程***k﹣1***x2+6x+3=0有實數根,則實數k的取值範圍為 k≤4且k≠1 .
【解答】解:∵關於x的一元二次方程***k﹣1***x2+6x+3=0有實數根,
∴,
解得:k≤4且k≠1.
故答案為:k≤4且k≠1.
15.從地面豎直向上丟擲一小球,小球的高度h***單位:米***與小球運動時間t***單位:秒***的函式關係式是h=9.8t﹣4.9t2.若小球的高度為4.9米,則小球的運動時間為 1s .
【解答】解:由題意知,
小球的高度h與小球運動時間t的函式關係式是:
h=9.8t﹣4.9t2.
令h=4.9,
解得t=1s,
故答案為:1s.
16.如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上兩點,且∠DAE=45°,將△ABE繞點A順時針旋轉90°後,得到△ACF,連線DF,下列結論中:①∠DAF=45°②△ABE≌△ACD③AD平分∠EDF④BE2+DC2=DE2;正確的有 ①③④ ***填序號***
【解答】解:∵在Rt△ABC中,AB=AC, ]
∴∠B=∠ACB=45°,
①由旋轉,可知:∠CAF=∠BAE,
∵∠BAD=90°,∠DAE=45°,
∴∠CAD+∠BAE=45°,
∴∠CAF+∠BAE=∠DAF=45°,故①正確;
②由旋轉,可知:△ABE≌△ACF,不能推出△ABE≌△ACD,故②錯誤;
③∵∠EAD=∠DAF=45°,
∴AD平分∠EAF,故③正確;
④由旋轉可知:AE=AF,∠ACF=∠B=45°,
∵∠ACB=45°,
∴∠DCF=90°,
由勾股定理得:CF2+CD2=DF2,
即BE2+DC2=DF2,
在△AED和△AFD中,
,
∴△AED≌△AFD***SAS***,
∴DE=DF,
∴BE2+DC2=DE2,
故答案為:①③④.
三.解答題***共9小題,滿分74分***
17.***10分***解方程:x2﹣4x﹣5=0.
【解答】解:***x+1******x﹣5***=0,
則x+1=0或x﹣5=0,
∴x=﹣1或x=5.
18.***9分***如圖,畫出△ABC關於原點O對稱的△A1B1C1,並寫出點A1,B1,C1的座標.
【解答】解:如圖所示,△A1B1C1即為所求,
A1***3,﹣2***,B1***2,1***,C1***﹣2,﹣3***.
19.***9分***淮北市某中學七年級一位同學不幸得了重病,牽動了全校師生的心,該校開展了“獻愛心”捐款活動.第一天收到捐款10 000元,第三天收到捐款12 100元.
***1***如果第二天、第三天收到捐款的增長率相同,求捐款增長率;
***2***按照***1***中收到捐款的增長速度,第四天該校能收到多少捐款?
【解答】解:***1***捐款增長率為x,根據題意得:
10000***1+x***2=12100,
解得:x1=0.1,x2=﹣2.1***捨去***.
則x=0.1=10%.
答:捐款的增長率為10%.
***2***根據題意得:12100×***1+10%***=13310***元***,
答:第四天該校能收到的捐款是13310元.
20.***10分***如圖,四邊形ABCD是邊長為1的正方形,點E,F分別在邊AB和BC上,△DCM是由△ADE逆時針旋轉得到的圖形.
***Ⅰ***旋轉中心是點 D .
***Ⅱ***旋轉角是 90 度,∠EDM= 90 度.
***Ⅲ***若∠EDF=45°,求證△EDF≌△MDF,並求此時△BEF的周長.
【解答】解:***Ⅰ***∵△DCM是由△ADE逆時針旋轉得到的圖形,
∴旋轉中心是點D.
故答案為D;
***Ⅱ***∵△DCM是由△ADE逆時針旋轉得到的圖形,
∴∠ADC=∠EDM=90°
∴旋轉角是90度,∠EDM=90度.
故答案為90,90;
***Ⅲ***∵∠EDF=45°,∠EDM=90°,
∴∠MDF=45°.
∵△DCM是由△ADE逆時針旋轉得到的圖形,
∴△DCM≌△DAE,
∴DM=DE,CM=AE.
在△EDF與△MDF中,
,
∴△EDF≌△MDF,
∴EF=MF=MC+CF,
∴△BEF的周長=BE+EF+BF
=BE+MC+CF+BF
=***BE+AE***+***CF+BF***
=AB+BC
=2.
21.***12分***從甲、乙兩題中選做一題.如果兩題都做,只以甲題計分.
題甲:若關於x一元二次方程x2﹣2***2﹣k***x+k2+12=0有實數根a,β.
***1***求實數k的取值範圍;
***2***設,求t的最小值.
題乙:如圖所示,在矩形ABCD中,P是BC邊上一點,連線DP並延長,交AB的延長線於點Q.
***1***若=,求的值;
***2***若點P為BC邊上的任意一點,求證:﹣=.
我選做的是 甲 題.
【解答】題甲
解:***1***∵一元二次方程x2﹣2***2﹣k***x+k2+12=0有實數根a,β,
∴△≥0,
即4***2﹣k***2﹣4***k2+12***≥0,
得k≤﹣2.
***2***由根與係數的關係得:a+β=﹣[﹣2***2﹣k***]=4﹣2k,
∴,
∵k≤﹣2,
∴﹣2≤<0,
∴,
即t的最小值為﹣4.
題乙:
***1***解:∵AB∥CD,∴==,即CD=3BQ,
∴===;
***2***證明:四邊形ABCD是矩形
∵AB=CD,AB∥DC
∴△DPC∽△QPB
∴=
﹣=﹣=1+﹣=1
∴﹣=1.
22.***12分***小明投資銷售一種進價為每件20元的護眼檯燈.銷售過程中發現,每月銷售量y***件***與銷售單價x***元***之間的關係可近似的看作一次函式:y=﹣10x+500,在銷售過程中銷售單價不低於成本價,而每件的利潤不高於成本價的60%.
***1***設小明每月獲得利潤為w***元***,求每月獲得利潤w***元***與銷售單價x***元***之間的函式關係式,並確定自變數x的取值範圍.
***2***當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?
***3***如果小明想要每月獲得的利潤不低於2000元,那麼小明每月的成本最少需要多少元?***成本=進價×銷售量***
【解答】解:***1***由題意,得:w=***x﹣20***•y=***x﹣20***•***﹣10x+500***=﹣10x2+700x﹣10000,即w=﹣10x2+700x﹣10000***20≤x≤32***
***2***對於函式w=﹣10x2+700x﹣10000的圖象的對稱軸是直線.
又∵a=﹣10<0,拋物線開口向下.∴當20≤x≤32時,W隨著X的增大而增大,
∴當x=32時,W=2160
答:當銷售單價定為32元時,每月可獲得最大利潤,最大利潤是2160元.
***3***取W=2000得,﹣10x2+700x﹣10000=2000
解這個方程得:x1=30,x2=40.
∵a=﹣10<0,拋物線開口向下.
∴當30≤x≤40時,w≥2000.
∵20≤x≤32
∴當30≤x≤32時,w≥2000.
設每月的成本為P***元***,由題意,得:P=20***﹣10x+500***=﹣200x+10000
∵k=﹣200<0,
∴P隨x的增大而減小.
∴當x=32時,P的值最小,P最小值=3600.
答:想要每月獲得的利潤不低於2000元,小明每月的成本最少為3600元.
23.***12分***如圖,拋物線y=x2﹣2x﹣3與x軸交於A、B兩點.
***1***拋物線與x軸的交點座標為 ***﹣1,0***或***3,0*** ;
***2***設***1***中的拋物線上有一個動點P,當點P在該拋物線上滑動到什麼位置時,滿足S△PAB=6,並求出此時P點的座標.
【解答】解:***1***當y=0時,
x2﹣2x﹣3=0,
解得,x1=﹣1,x2=3,
∴拋物線與x軸的交點座標為***﹣1,0***或***3,0***,
故答案為:***﹣1,0***或***3,0***;
***2***∵點A***﹣1,0***,點B***3,0***,y=x2﹣2x﹣3=***x﹣1***2﹣4,
∴此拋物線有最小值,此時y=﹣4,AB=3﹣***﹣1***=4,
∵S△PAB=6,拋物線上有一個動點P,
∴點P的縱座標的絕對值為:,
∴x2﹣2x﹣3=3或x2﹣2x﹣3=﹣3,
解得,x1=1+,x2=1﹣,x3=0,x4=2,
∴點P的座標為***1+,3***、***1﹣,3***、***0,﹣3***、***2,﹣3***.
24.如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸於點C.A***1,1***、B***3,1***.動點P從O點出發,沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直於直線OA,垂足為Q,設P點移動的時間為t秒***0
***1***求經過O、A、B三點的拋物線解析式;
***2***求S與t的函式關係式;
***3***將△OPQ繞著點P順時針旋轉90°,是否存t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.
【解答】解:***1***解法一:由圖象可知:拋物線經過原點,
設拋物線解析式為y=ax2+bx***a≠0***.
把A***1,1***,B***3,1***代入上式得,
解得,
∴所求拋物線解析式為y=﹣x2+x;
解法二:∵A***1,1***,B***3,1***,∴拋物線的對稱軸是直線x=2.
設拋物線解析式為y=a***x﹣2***2+h***a≠0***,
把O***0,0***,A***1,1***代入得
解得∴所求拋物線解析式為:y=﹣***x﹣2***2+.
***2***分三種情況:
①當0
∵A***1,1***,在Rt△OAF中,AF=OF=1,∠AOF=45°,
在Rt△OPQ中,OP=t,∠OPQ=∠QOP=45°,
∴PQ=OQ=tcos45°=t,
∴S=***t***2=t2.
②當2
作GH⊥x軸於點H,∠OPQ=∠QOP=45°,則四邊形OAGP是等腰梯形,
重疊部分的面積是S梯形OAGP.
∴AG=FH=t﹣2,
∴S=***AG+OP***AF=***t+t﹣2***×1=t﹣1.
③當3
重疊部分的面積是S五邊形OAMNC.
因為△PNC和△BMN都是等腰直角三角形,
所以重疊部分的面積是S五邊形OAMNC=S梯形OABC﹣S△BMN.
∵B***3,1***,OP=t,
∴PC=CN=t﹣3,
∴BM=BN=1﹣***t﹣3***=4﹣t,
∴S=***2+3***×1﹣***4﹣t***2 S=﹣t2+4t﹣;
***3***存在t1=1,t2=2.
將△OPQ繞著點P順時針旋轉90°,此時Q***t+,***,O***t,t***
①當點Q在拋物線上時, =×***t+***2+×***t+***,解得t=2;
②當點O在拋物線上時,t=﹣t2+t,解得t=1.
25.已知:二次函式y=ax2﹣2x+c的圖象與x於A、B,A在點B的左側***,與y軸交於點C,對稱軸是直線x=1,平移一個單位後經過座標原點O
***1***求這個二次函式的解析式;
***2***直線交y軸於D點,E為拋物線頂點.若∠DBC=α,∠CBE=β,求α﹣β的值;
***3***在***2***問的前提下,P為拋物線對稱軸上一點,且滿足PA=PC,在y軸右側的拋物線上是否存在點M,使得△BDM的面積等於PA2?若存在,求出點M的座標;若不存在,請說明理由.
【解答】解:***1***由題意,A***﹣1,0***,
∵對稱軸是直線x=1,
∴B***3,0***;***1分***
把A***﹣1,0***,B***3,0***分別代入y=ax2﹣2x+c
得;***2分***
解得.
∴這個二次函式的解析式為y=x2﹣2x﹣3.
***2***∵直線與y軸交於D***0,1***,
∴OD=1,
由y=x2﹣2x﹣3=***x﹣1***2﹣4得E***1,﹣4***;
連線CE,過E作EF⊥y軸於F***如圖1***,則EF=1,
∴OC=OB=3,CF=1=EF,
∴∠OBC=∠OCB=∠45°,
BC==,
;
∴∠BCE=90°=∠BOD,,
,
∴,
∴△BOD∽△BCE,***6分***
∴∠CBE=∠DBO,
∴α﹣β=∠DBC﹣∠CBE=∠DBC﹣∠DBO=∠OBC=45°.***7分***
***3***設P***1,n***,
∵PA=PC,
∴PA2=PC2,即***1+1***2+***n﹣0***2=***1+0***2+***n+3***2
解得n=﹣1,
∴PA2=***1+1***2+***﹣1﹣0***2=5,
∴S△EDW=PA2=5;***8分***
法一:設存在符合條件的點M***m,m2﹣2m﹣3***,則m>0,
①當M在直線BD上側時,連線OM***如圖1***,
則S△BDM=S△OBM+S△ODM﹣S△BOD=5,
即,
,
整理,得3m2﹣5m﹣22=0,
解得m1=﹣2***捨去***,,
把代入y=m2﹣2m﹣3得;
∴;***10分***
②當M在直線BD下側時,不妨叫M1,連線OM1***如圖1***,
則S△BDM1=S△BOD+S△BOM1﹣S△DOM1=5,
即,
,
整理,得3m2﹣5m﹣2=0,
解得,***捨去***
把m=2代入y=m2﹣2m﹣3得y=﹣3,
∴M1***2,﹣3***;
綜上所述,存在符合條件的點M,其座標為或***2,﹣3***.***12分***
法二:設存在符合條件的點M***m,m2﹣2m﹣3***,則m>0,
①當M在直線BD上側時,過M作MG∥y軸,
交DB於G;***如圖2***
設D、B到MG距離分別為h1,h2,則
S△BDM=S△DMG﹣S△BMG=5,
即,
整理,得3m2﹣5m﹣22=0;
解得m1=﹣2***捨去***,;
把代入y=m2﹣2m﹣3
得;
∴.***10分***
②當M在直線BD下側時,不妨叫M1,過M1作M1G1∥y軸,交DB於G1***如圖2***
設D、B到M1G1距離分別為h1、h2,則S△BDM=S△DM1G1+S△BM1G1=5,
即,
,
,
整理,得3m2﹣5m﹣2=0,
解得,***捨去***
把m=2代入y=m2﹣2m﹣3得y=﹣3,
∴M1***2,﹣3***;
綜上所述,存在符合條件的點M,其座標為或***2,﹣3***.***12分***
法三:①當M在直線BD上側時,過M作MH∥BD,交y軸於H,連線BH;***如圖3***
則S△DHB=S△BDM=5,
即,,
∴DH=,
∴;
∴直線MH解析式為;
聯立
得或;
∵M在y軸右側,
∴M座標為.***10分***
②當M在直線BD下側時,不妨叫M1,過M1作M1H1∥BD,交y軸於H1,
連線BH1***如圖3***,同理可得,
∴,
∴直線M1H1解析式為,
聯立
得或;
∵M1在y軸右側,
∴M1座標為***2,﹣3***
綜上所述,存在符合條件的點M,其座標為或***2,﹣3***.***12分***