提高高中數學的方法

  握正確有效的解題方法和解題技巧,不僅可以幫助同學們培養好的數學素養,也是提升學生數學解題效率的關鍵。那麼今天小編為大家推薦。

  是什麼

  首先,你要培養三項能力:

  這三項能力對於數學成績的高低起著關鍵性的作用,即:

  1、理解知識,知道知識是從哪裡來的,要用到哪裡去;

  2、善於分析,一道題目,能夠快速找到可以利用的條件,對應前面的恰當知識;

  3、精於思維管理,思路靈活並且善於主動式思考,可以快速精準的解決問題。

  在形容這個解題能力的時候,曹老師舉個很恰當的例子:一道題,給出我們一些條件,又給出我們一個目標。但是在目標和條件之間,還有一些空,需要我們去填 補,怎樣填補?用我們解決問題的思想,將自己理解的知識點填充在空白處。好,這道題你就做的很漂亮。其實學習和工作一樣,跟我們應對生活中的任何問題都一 樣。我們可以回想一下,在我們遇到問題的時候,我們是不是都會率先抓住問題的要害善抓重點的人,問題都處理的高效精準。相反,都一盤散沙?抓住要害就 等於抓住了目標,為了達成這個目標,我們首先數數當前我們擁有什麼有利條件,接下來創造一些條件,完成目標。在數學題中,題目就是目標;有利條件就是已知 條件;創造條件,就是利用解決問題的思維,找到的知識點。如果這樣去看待問題,你還認為數學抽象嗎?我常常對學生講:學習不應該很辛苦,堅持、努力、鞠躬 盡瘁、嘔心瀝血這些詞語都帶有痛苦的成份,不是最佳的學習方式。學習的光明境界是,了之一種內在的存在形式,找到究竟。當我們了之知識存在的形式之後,我們會與他們輕鬆相應,我們認識每個知識,他們也認識我們,這樣的相處才很愉快。

  在解題思想上,通過不斷尋找“目標前提”也就是必要性思維,是能夠做到以不變應萬變,大道無形。莊肅欽老師送給全國學生的數學感言“數 學,有著無窮的魅力!她具有音樂般的和諧、圖畫般的美麗、詩意般的境界;她賦予真理以生命,給我們思想增加光輝;她澄清智慧,滌盡有史以來的矇昧和無知; 平淡中見新奇,新奇中有藝術,這就是數學。我會和同學們一起,遨遊數學之海洋、賞析數學之瑰麗、破解數學之謎題、享受數學之絕妙,在享受數學的道路上不斷 探索……”

  其次,我們要有一套訓練有素的數學複習標準步驟,下面就讓我們循著通往數學滿分的路,看看如何駕馭自己的思想走上數學高分的捷徑。

  一、解題思路的理解和來源

  平時大家評論一個孩子“聰明”或者“不聰明”的依據是看這個孩子對某件事或很多事得反應以及有沒有他自己的看法。如一個“聰明”的孩子,往往反應快、思路 清楚,有自己的主見。那麼我們認為“反應快、思路清楚、有主見”是聰明的前提。學習成績好的同學,反應快、思路清楚、有主見就是他們的必備條件。

  那麼解題也如此,必須反應快、思路清楚、有主見。同一道題,不同的學生從不同的角度去理解,由不同的看法最終匯聚成正確的解題過程,這是解題的必然。無論 是推導、還是硬性套用、憑藉經驗做題,都是思路的一種。有的同學由開始思路不清漸漸轉變為清楚,有的同學根本沒有思路,這就形成了做題的上的差距。

  如果能教會給學生,在處理數學問題上,第一時間最短的思考路徑,並且清晰無比,這樣,每個學生都是“聰明的孩子”,在做題上就能攻無不克戰無不勝。

  解題思路的來源就是對題的看法,也就是第一齣發點在哪。

  二、如何在短期內訓練解題能力

  數學解題思想其實只要掌握一種即可,即必要性思維。這是解答數學試題的萬用法門,也是最直接、最快捷的答題思想。什麼是必要性思維?必要性思維就是通過所 求結論或者某一限定條件尋求前提的思想。幾乎所有數學命題都可以用這一思想進行破解。這裡我用視訊來舉兩個簡單的例子,說明數學必要性思維是如何應用的。

  縱觀近幾年高考數學試題,可以看出試題加強了對知識點靈活應用的考察。這就對考生的思維能力要求大大加強。如何才能提升思維能力,很多考生便依靠題海戰 術,寄希望多做題來應對多變的考題,然而憑藉題海戰術的功底仍然難以獲得科學的思維方式,以至收效甚微。最主要的原因就是解題思路隨意造成的,並非所謂 “不夠用功”等原因。由於思維能力的原因,考生在解答高考題時形成一定的障礙。主要表現在兩個方面,一是無法找到解題的切入點,二是雖然找到解題的突破 口,但做這做著就走不下去了。如何解決這兩大障礙呢?本章將介紹行之有效的方法,使考生獲得有益的啟示。

  三、尋找解題途徑的基本方法——從求解證入手

  遇到有一定難度的考題我們會發現出題者設定了種種障礙。從已知出發,岔路眾多,順推下去越做越複雜,難得到答案,如果從問題入手,尋找要想獲得所求,必須 要做什麼,找到“需知”後,將“需知”作為新的問題,直到與“已知“所能獲得的“可知”相溝通,將問題解決。事實上,在不等式證明中採用的“分析法”就是 這種思維的充分體現,我們將這種思維稱為“逆向思維”——目標前提性思維。

  12種超級實用的數學解題方法

  解題方法1:調理大腦思緒,提前進入數學情境

  考前要摒棄雜念,排除干擾思緒,使大腦處於“空白”狀態,創設數學情境,進而醞釀數學思維,提前進入“角色”,通過清點用具、暗示重要知識和方法、提醒常見解題誤區和自己易出現的錯誤等,進行鍼對性的自我安慰,從而減輕壓力,輕裝上陣,穩定情緒、增強信心,使思維單一化、數學化、以平穩自信、積極主動的心態準備應考。

  解題方法2:沉著應戰,確保旗開得勝,以利振奮精神

  良好的開端是成功的一半,從考試的心理角度來說,這確實是很有道理的,拿到試題後,不要急於求成、立即下手解題,而應通覽一遍整套試題,摸透題情,然後穩操一兩個易題熟題,讓自己產生“旗開得勝”的快意,從而有一個良好的開端,以振奮精神,鼓舞信心,很快進入最佳思維狀態,即發揮心理學所謂的“門坎效應”,之後做一題得一題,不斷產生正激勵,穩拿中低,見機攀高。

  解題方法3:“內緊外鬆”,集中注意,消除焦慮怯場

  集中注意力是考試成功的保證,一定的神經亢奮和緊張,能加速神經聯絡,有益於積極思維,要使注意力高度集中,思維異常積極,這叫內緊,但緊張程度過重,則會走向反面,形成怯場,產生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外鬆。

  解題方法4:一“慢”一“快”,相得益彰

  有些考生只知道考場上一味地要快,結果題意未清,條件未全,便急於解答,豈不知欲速則不達,結果是思維受阻或進入死衚衕,導致失敗。應該說,審題要慢,解答要快。審題是整個解題過程的“基礎工程”,題目本身是“怎樣解題”的資訊源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認識,為形成解題思路提供全面可靠的依據。而思路一旦形成,則可儘量快速完成。

  解題方法5:“六先六後”,因人因卷制宜

  在通覽全卷,將簡單題順手完成的情況下,情緒趨於穩定,情境趨於單一,大腦趨於亢奮,思維趨於積極,之後便是發揮臨場解題能力的黃金季節了,這時,考生可依自己的解題習慣和基本功,結合整套試題結構,選擇執行“六先六後”的戰術原則。

  1.先易後難

  。就是先做簡單題,再做綜合題,應根據自己的實際,果斷跳過啃不動的題目,從易到難,也要注意認真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。

  2.先熟後生。

  通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處,對後者,不要驚慌失措,應想到試題偏難對所有考生也難,通過這種暗示,確保情緒穩定,對全卷整體把握之後,就可實施先熟後生的方法,即先做那些內容掌握比較到家、題型結構比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時,可以使思維流暢、超常發揮,達到拿下中高檔題目的目的。

  3.先同後異。

  先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利於提高單位時間的效益。高考題一般要求較快地進行“興奮灶”的轉移,而“先同後異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負擔,保持有效精力,

  4.先小後大。

  小題一般是資訊量少、運算量小,易於把握,不要輕易放過,應爭取在大題之前儘快解決,從而為解決大題贏得時間,創造一個寬鬆的心理基矗

  5.先點後面。

  近年的高考數學解答題多呈現為多問漸難式的“梯度題”,解答時不必一氣審到底,應走一步解決一步,而前面問題的解決又為後面問題準備了思維基礎和解題條件,所以要步步為營,由點到面6.先高後低。即在考試的後半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實施“分段得分”,以增加在時間不足前提下的得分。

  解題方法6:確保運算準確,立足一次成功

  數學高考題的容量在120分鐘時間內完成大小26個題,時間很緊張,不允許做大量細緻的解後檢驗,所以要儘量準確運算關鍵步驟,力求準確,寧慢勿快,立足一次成功。解題速度是建立在解題準確度基礎上,更何況數學題的中間資料常常不但從“數量”上,而且從“性質”上影響著後繼各步的解答。所以,在以快為上的前提下,要穩紮穩打,層層有據,步步準確,不能為追求速度而丟掉準確度,甚至丟掉重要的得分步驟,假如速度與準確不可兼得的說,就只好舍快求對了,因為解答不對,再快也無意義。

  解題方法7:講求規範書寫,力爭既對又全

  考試的又一個特點是以卷面為唯一依據。這就要求不但會而且要對、對且全,全而規範。會而不對,令人惋惜;對而不全,得分不高;表述不規範、字跡不工整又是造成高考數學試卷非智力因素失分的一大方面。因為字跡潦草,會使閱卷老師的第一印象不良,進而使閱卷老師認為考生學習不認真、基本功不過硬、“感情分”也就相應低了,此所謂心理學上的“光環效應”。“書寫要工整,卷面能得分”講的也正是這個道理。

  解題方法8:面對難題,講究方法,爭取得分

  會做的題目當然要力求做對、做全、得滿分,而更多的問題是對不能全面完成的題目如何分段得分。下面有兩種常用方法。

  1.缺步解答。

  對一個疑難問題,確實啃不動時,一個明智的解題方法是:將它劃分為一個個子問題或一系列的步驟,先解決問題的一部分,即能解決到什麼程度就解決到什麼程度,能演算幾步就寫幾步,每進行一步就可得到這一步的分數。如從最初的把文字語言譯成符號語言,把條件和目標譯成數學表示式,設應用題的未知數,設軌跡題的動點座標,依題意正確畫出圖形等,都能得分。還有象完成數學歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從區域性到整體,產生頓悟,形成思路,獲得解題成功。

  2.跳步解答。

  解題過程卡在一中間環節上時,可以承認中間結論,往下推,看能否得到正確結論,如得不出,說明此途徑不對,立即否得到正確結論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預期結論,就再回頭集中力量攻克這一過渡環節。若因時間限制,中間結論來不及得到證實,就只好跳過這一步,寫出後繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為“已知”,完成第二問,這都叫跳步解答。也許後來由於解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經努力而攻下了中間難點,可在相應題尾補上。

  解題方法9:以退求進,立足特殊

  發散一般對於一個較一般的問題,若一時不能取得一般思路,可以採取化一般為特殊如用特殊法解選擇題,化抽象為具體,化整體為區域性,化參量為常量,化較弱條件為較強條件,等等。總之,退到一個你能夠解決的程度上,通過對“特殊”的思考與解決,啟發思維,達到對“一般”的解決。

  解題方法10:應用性問題思路:面—點—線

  解決應用性問題,首先要全面調查題意,迅速接受概念,此為“面”;透過冗長敘述,抓住重點詞句,提出重點資料,此為“點”;綜合聯絡,提煉關係,依靠數學方法,建立數學模型,此為“線”,如此將應用性問題轉化為純數學問題。當然,求解過程和結果都不能離開實際背景。

  解題方法11:執果索因,逆向思考,正難則反

  對一個問題正面思考發生思維受阻時,用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結論或中間步驟入手,找充分條件;用反證法,從否定結論入手找必要條件。

  解題方法12:迴避結論的肯定與否定,解決探索性問題

  對探索性問題,不必追求結論的“是”與“否”、“有”與“無”,可以一開始,就綜合所有條件,進行嚴格的推理與討論,則步驟所至,結論自明。

猜您感興趣: