學好高中數學的方法與建議

  學好高中數學有什麼樣的方法和建議呢?下面是有小編為你整理的 ,希望能夠幫助到你!

  

  一、逐步形成“以我為主”的學習模式

  數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善於開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯絡,不滿足於現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究“活”,只看書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法。

  二、養成良好的學習習慣

  1、要養成良好的個性品質。要樹立正確的學習目標,培養濃厚的學習興趣和頑強的學習毅力,要有足夠的學習信心。

  2、要養成良好的審題習慣,提高閱讀能力。審題是解題的關鍵,數學題是由文字語言、符號語言和圖形語言構成的,逐字逐句細心推敲,尋找突破點,從而形成解題思路。

  3、要養成良好的解題習慣,提高自己的思維能力。訓練並規範解題習慣是提高用文字、符號和圖形三種數學語言表達的有效途徑,而數學語言又是發展思維能力的基礎。因此,夯實基礎才能逐步提高自己的思維能力。

  4、要養成良好的演算、驗算習慣,提高運算能力。同學們要多動腦勤動手,不僅能筆算,而且也能口算和心算,對複雜運算,要有耐心,掌握算理,注重簡便方法。提高計算能力及計算速度和準確性。

  5、要養成歸納總結的習慣,提高概括能力。每學完一節一章後,要按知識的邏輯關係進行歸納總結,使所學知識系統化、條理化、專題化,對進一步深化知識積累資料,靈活應用知識,提高能力將起到很好的促進作用。

  6、要提高自我調控能力。儘快適應新的學習環境及各科教師的教學方法。立足於自身的實際,優化學習策略,調控自己的學習行為,從而使自己學得好、學得快。

  三、針對自己的學習情況,採取一些具體的措施

  記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下藥;解答問題完整、推理嚴密。熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化或半自動化的熟練程度。經常對知識結構進行梳理,形成板塊結構,實行“整體集裝”,如表格化,使知識結構一目瞭然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納於同一知識方法。閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課外題,加大自學力度,拓展自己的知識面。及時複習,強化對基本概念知識體系的理解與記憶,進行適當的反覆鞏固,消滅前學後忘。學會從多角度、多層次地進行總結歸類。

  如:①從數學思想分類②從解題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網路化。經常在做題後進行一定的“反思”,思考一下本題所用的基礎知識,數學思想方法是什麼,為什麼要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。無論是作業還是測驗,都應把準確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,這是學好數學的重要問題。

  四、及時瞭解、掌握常用的數學思想和方法

  學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以後,還要掌握具體的方法,比如:換元、待定係數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。

  有關 高中數學解題方法的推薦

  一、答題和時間的關係

  整體而言,高考數學要想考好,必須要有紮實的基礎知識和一定量的習題練習,在此基礎上輔以一些做題方法和考試技巧。往年考試中總有許多考生抱怨考試時間不夠用,導致自己會做的題最後沒時間做,覺得很虧。

  高考考的是個人能力,要求考生不但會做題還要準確快速地解答出來,只有這樣才能在規定的時間內做完並能取得較高的分數。因此,對於大部分高考生來說,養成快速而準確的解題習慣並熟練掌握解題技巧是非常有必要的。

  二、快與準的關係

  在目前題量大、時間緊的情況下,準字則尤為重要。只有準才能得分,只有準你才可不必考慮再花時間檢查,而快是平時訓練的結果,不是考場上所能解決的問題,一味求快,只會落得錯誤百出。如去年第21題應用題,此題列出分段函式解析式並不難,但是相當多的考生在匆忙中把二次函式甚至一次函式都算錯,儘管後繼部分解題思路正確又花時間去算,也幾乎得不到分,這與考生的實際水平是不相符的。適當地慢一點、準一點,可得多一點分;相反,快一點,錯一片,花了時間還得不到分。

  三、審題與解題的關係

  有的考生對審題重視不夠,匆匆一看急於下筆,以致題目的條件與要求都沒有吃透,至於如何從題目中挖掘隱含條件、啟發解題思路就更無從談起,這樣解題出錯自然多。只有耐心仔細地審題,準確地把握題目中的關鍵詞與量***如至少,a>0,自變數的取值範圍等等***,從中獲取儘可能多的資訊,才能迅速找準解題方向。

  四、會做與得分的關係

  要將你的解題策略轉化為得分點,主要靠準確完整的數學語言表述,這一點往往被一些考生所忽視,因此卷面上大量出現會而不對對而不全的情況,考生自己的估分與實際得分差之甚遠。如立體幾何論證中的跳步,使很多人丟失1/3以上得分,代數論證中以圖代證,儘管解題思路正確甚至很巧妙,但是由於不善於把圖形語言準確地轉譯為文字語言,得分少得可憐;再如去年理17題三角函式影象變換,許多考生心中有數卻說不清楚,扣分者也不在少數。只有重視解題過程的語言表述,會做的題才能得分。

  五、難題與容易題的關係

  拿到試卷後,應將全卷通覽一遍,一般來說應按先易後難、先簡後繁的順序作答。近年來考題的順序並不完全是難易的順序,如去年理19題就比理20、理21要難,因此在答題時要合理安排時間,不要在某個卡住的題上打持久戰,那樣既耗費時間又拿不到分,會做的題又被耽誤了。這幾年,數學試題已從一題把關轉為多題把關,因此解答題都設定了層次分明的臺階,***寬,入手易,但是深入難,解到底難,因此看似容易的題也會有咬手的關卡,看似難做的題也有可得分之處。所以考試中看到容易題不可掉以輕心,看到新面孔的難題不要膽怯,冷靜思考、仔細分析,定能得到應有的分數。