高三數學衝刺解題技巧

  數學是應用性很強的學科,學習數學就是學習解題。搞題海戰術的方式、方法固然是不對的,但離開解題來學習數學同樣也是錯誤的。其中的關鍵在於對待題目的態度和處理解題的方式上。

  

  --首先是精選題目,做到少而精。只有解決質量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數的同學還沒有辨別、分析題目好壞的能力,這就需要在老師的指導下來選擇複習的練習題,以瞭解高考題的形式、難度。

  --其次是分析題目。解答任何一個數學題目之前,都要先進行分析。相對於比較難的題目,分析更顯得尤為重要。我們知道,解決數學問題實際上就是在題目的已知條件和待求結論中架起聯絡的橋樑,也就是在分析題目中已知與待求之間差異的基礎上,化歸和消除這些差異。當然在這個過程中也反映出對數學基礎知識掌握的熟練程度、理解程度和數學方法的靈活應用能力。例如,許多三角方面的題目都是把角、函式名、結構形式統一後就可以解決問題了,而選擇怎樣的三角公式也是成敗的關鍵。

  --最後,題目總結。解題不是目的,我們是通過解題來檢驗我們的學習效果,發現學習中的不足的,以便改進和提高。因此,解題後的總結至關重要,這正是我們學習的大好機會。對於一道完成的題目,有以下幾個方面需要總結:

  ①在知識方面,題目中涉及哪些概念、定理、公式等基礎知識,在解題過程中是如何應用這些知識的。

  ②在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應用。

  ③能不能把解題過程概括、歸納成幾個步驟***比如用數學歸納法證明題目就有很明顯的三個步驟***。

  ④能不能歸納出題目的型別,進而掌握這類題目的解題通法***我們反對老師把現成的題目型別給學生,讓學生拿著題目套型別,但我們鼓勵學生自己總結、歸納題目型別***

  做題策略:

  高考是以學生解題能力的高低為標準的一次性選拔,這就使得臨場發揮顯得尤為重要,研究和總結臨場解題策略,進行應試訓練和心理輔導,已成為高考輔導的重要內容之一,正確運用數學高考臨場解題策略,不僅可以預防各種障礙造成的不合理丟分和計算失誤及筆誤,而且還能運用科學的檢索方法,建立神經聯絡,挖掘思維和知識的潛能,考出最佳成績。

  一、調理大腦思緒,提前進入數學情境

  考前要摒棄雜念,排除干擾思緒,使大腦處於“空白”狀態,創設數學情境,進而醞釀數學思維,提前進入“角色”,通過清點用具、暗示重要知識和方法、提醒常見解題誤區和自己易出現的錯誤等,進行鍼對性的自我安慰,從而減輕壓力、輕裝上陣、穩定情緒、增強信心,使思維單一化、數學化,以平穩自信、積極主動的心態準備應考。

  二、“內緊外鬆”,集中注意,消除怯場

  集中注意力是考試成功的保證,一定的精神亢奮和緊張,能加速神經聯絡,有益於積極思維,要使注意力高度集中,思維異常積極,這叫內緊;但緊張程度過重,則會走向反面,形成怯場。產生焦慮,放得開,這叫外鬆。

  三、沉著應戰,確保旗開得勝,以利振奮精神

  良好的開端是成功的一半,從考試的心理角度來說,這確實是很有道理的。拿到試題後,不要急於求成,立即下手解題,而應通覽一遍整套試題,摸透題情,然後穩操一兩個易題熟題,讓自己產生“旗開得勝”的快意,從而有一個良好的開端,以振奮精神、鼓舞信心,很快進入最佳思維狀態,即發揮心理學中所謂的“門坎效應”。之後做一題得一題,不斷產生正激勵,穩拿中低,見機攀高。

  四、“六先六後”,因人因卷制宜

  在通覽全卷,將簡單題順手完成的情況下,情緒趨於穩定,情境趨於單一,大腦趨於亢奮,思維趨於積極,之後便是發揮臨場解題能力的黃金時間了。這時,考生可依自己的解題習慣和基本功,結合整套試卷結構,選擇執行“六先六後”的戰術原則。

  1 、先易後難。 就是先做簡單題,再做綜合題,根據自己的實際,果斷跳過啃不動的題目,從易到難解題,但要注意認真對待每一道題,力求有效,不能走馬觀花,有難就退。

  2 、先熟後生 。通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處。對後者,不要驚慌失措,應想到試題偏難對所有考生都難。通過這種暗示,確保情緒穩定,對全卷整體把握之後,就可實施先熟後生的策略,即先做那些內容掌握比較到家、題型結構比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時,可以使思維流暢、超常發揮,達到拿下中高檔題目的目的。

  3 、先同後異 。就是說,先做同科同類型的題目,思維比較集中,知識和方法的溝通比較容易,有利於提高單位時間的效益。高考題一般要求較快地進行“興奮灶”的轉移,而“先同後異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負擔,保持有效精力。

  4 、先小後大 。小題一般資訊量少、運算量小,易於把握,不要輕易放棄,應爭取在做大題之前儘快解決,從而為解決大題贏得時間,創造一個寬鬆的心理基礎。

  5 、先點後面。 近年的高考數學解答題呈現為多問漸難式的“梯度題”,解答時不必一氣審到底,應走一步解決一步,而前面問題的解決又為後面問題準備了思維基礎和解題條件,所以要步步為營,由點到面。

  6 、先高後低 。即在考試的後半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實施“分段得分”,以增加在時間不足前提下的得分。

  五、一“慢”一“快”,相得益彰

  審題要慢,解答要快。有些考生只想在考場上一味地求快,結果題意未清,條件未全,便急於解答,豈不知欲速則不達,結果思維受阻或進入死衚衕,導致失敗。審題是整個解題過程的“基礎工程”,題目本身是“怎樣解題”的資訊源,必須充分弄清題意,綜合所有條件,提煉全部線索,形成整體認識,為形成解題思路提供全面可靠的依據,而思路一旦形成,則可快速完成。

  六、確保運算準確,立足一次成功

  數學高考題的容量為在 120 分鐘內完成大小共 22 道題,時間很緊張,不允許做大量細緻的解後檢驗,所以要儘量準確運算***關鍵步驟力求準確,寧慢勿快***,立足一次成功。解題速度是建立在解題準確度的基礎上,更何況數學題的中間資料常常不但從“數量”上,而且從“性質”上影響著後續各步的解答。所以,在以快為上的前提下,要穩紮穩打,層層有據,步步準確,不能為追求速度而丟掉準確度,甚至丟掉重要的得分步驟。假如速度與準確度不可兼得的話,就只好舍快求準了,因為解答不對,再快也無意義。

  七、講求規範書寫,力爭既對又全

  考試的又一個特點是以卷面為唯一依據。這就要求不但要會而且要對、對而全、全而規範。會而不對,令人惋惜;對而不全,得分不高;表述不規範、字跡不工整又是造成高考數學試卷非智力因素失分的一大因素。因為字跡潦草,會使閱卷老師的第一印象不良,進而使閱卷老師認為考生學習不認真、基本功不過硬,“感情分”也就相應低了,此所謂心理學上的“光環效應”。“書寫要工整,卷面能得分”講得也正是這個道理。

  八、面對難題,講究策略,爭取得分

  會做的題目當然要力求做對、做全、做滿分,而更多的問題是對不能全面完成的題目如何分段得分下面有兩種常用方法。

  1 、缺步解答 。對一個疑難問題,確實啃不動時,一個明智的解題策略是:將它劃分為一個子問題或一系列的步驟,先解決問題的一部分,即能解決到什麼程度就解決到什麼程度,能演算到幾步就演算到幾步,每進行一步就可得到這一步的分數。如從最初的把文字語言譯成符號語言,把條件和目標譯成數學表示式,設應用題的未知數,設軌跡的動點座標,依題意正確畫出圖形等,都能得分,還有像完成數學歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且渴望在上述處理中,從感性到理性,從特殊到一般,從區域性到整體,產生頓悟,形成思路,獲得解題成功。

  2 、跳步解答。 解題過程中卡在一中間環節上時,可以承認中間結論,往下推,看能否得到正確結論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預期結論,就再回頭集中力量攻克這一過渡環節。若因時間限制,中間結論來不及得到證實,就只好跳過這一步,寫出後繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為“已知”,完成第二問,這叫跳步解答。也許後來由於解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經努力而攻下了中心難點,可在相應題尾補上。

  九、以退求進,立足特殊,發散一般

  對於一個較一般的問題,若一時不能取得一般思路,可以採取化一般為特殊***如用特殊法解選擇題***,化抽象為具體,化整體為區域性,化參量為常量,化較弱條件為較強條件等等。總之,退到一個你能夠解決的程度上,通過對“特殊”的思考和解決,啟發思維,達到對一般的解決。

  十、執果索因,逆向思維,正難則反

  對一個問題正面思考發生思維受阻時,用逆向思維的方式去探求新的解題途徑,往往能得到突破性的進展,順向推有困難就逆向推,直接證有困難就反證。如用分析法,從肯定結論或中間步驟入手;用反證法,從否定結論入手,找必要條件。

  十一、迴避結論的肯定與否定,解決探索性問題

  對探索性問題不必追求結論的“是”與“否”,有與無 , 可以一開始,就綜合所有條件,進行嚴格的推理和討論,則步驟所至,結論自明。

  十二、應用性問題思路:面——點——線

  解決應用性問題,首先要全面審查題意,迅速接受概念,此為“面”;透過冗長敘述,抓住重點詞句,提出重要資料,此為“點”;綜合聯絡,提煉關係,依靠數學方法,建立數學模型,此為“線”。如此就可以將應用性問題轉化為純數學問題。當然,求解過程和結果都不能離開實際背景。

  十三、多看一些同班同學或那些優異學生的學習方法和學習提高方法。