物理學中的多普勒現象在現實中的應用

  多普勒現象為物體輻射的波長因為波源和觀測者的相對運動而產生變化。下面是小編為你整理的,一起來看看吧。

  :光波

  具有波動性的光也會出現這種效應,它又被稱為多普勒-斐索效應. 因為法國物理學家斐索***1819-1896***於1848年獨立地對來自恆星的波長偏移做了解釋,指出了利用這種效應測量恆星相對速度的辦法.光波與聲波的不同之處在於,光波頻率的變化使人感覺到是顏色的變化. 如果恆星遠離我們而去,則光的譜線就向紅光方向移動,稱為紅移;如果恆星朝向我們運動,光的譜線就向紫光方向移動,稱為藍移.

  :聲波

  在日常生活中,我們都會有這種經驗:

  當一列鳴著汽笛的火車經過某觀察者時,他會發現火車汽笛的聲調由高變低. 為什麼會發生這種現象呢?這是因為聲調的高低是由聲波振動頻率的不同決定的,如果頻率高,聲調聽起來就高;反之聲調聽起來就低.這種現象稱為多普勒效應,它是用發現者克里斯蒂安·多普勒***ChristianDoppler,1803-1853***的名字命名的,多普勒是奧地利物理學家和數學家。

  他於1842年首先發現了這種效應.為了理解這一現象,就需要考察火車以恆定速度駛近時,汽笛發出的聲波在傳播時的規律.其結果是聲波的波長縮短,好象波被壓縮了.因此,在一定時間間隔內傳播的波數就增加了,這就是觀察者為什麼會感受到聲調變高的原因;相反,當火車駛向遠方時,聲波的波長變大,好象波被拉伸了。

  因此,聲音聽起來就顯得低沉.定量分析得到f1=***u+v0***/***u-vs***f ,其中vs為波源相對於介質的速度,v0為觀察者相對於介質的速度,f表示波源的固有頻率,u表示波在靜止介質中的傳播速度. 當觀察者朝波源運動時,v0取正號;當觀察者背離波源***即順著波源***運動時,v0取負號. 當波源朝觀察者運動時vs前面取負號;前波源背離觀察者運動時vs取正號. 從上式易知,當觀察者與聲源相互靠近時,f1>f ;當觀察者與聲源相互遠離時。f1

  :光

  20世紀20年代,美國天文學家斯萊弗在研究遠處的旋渦星雲發出的光譜時,首先發現了光譜的紅移,認識到了旋渦星雲正快速遠離地球而去.1929年哈勃根據光普紅移總結出著名的哈勃定律:星系的遠離速度v與距地球的距離r成正比,即v=Hr,H為哈勃常數.根據哈勃定律和後來更多天體紅移的測定,人們相信宇宙在長時間內一直在膨脹,物質密度一直在變小. 由此推知,宇宙結構在某一時刻前是不存在的,它只能是演化的產物. 因而1948年伽莫夫***G. Gamow***和他的同事們提出大爆炸宇宙模型. 20世紀60年代以來,大爆炸宇宙模型逐漸被廣泛接受,以致被天文學家稱為宇宙的"標準模型" .

  多普勒-斐索效應使人們對距地球任意遠的天體的運動的研究成為可能,這隻要分析一下接收到的光的頻譜就行了. 1868年,英國天文學家W. 哈金斯用這種辦法測量了天狼星的視向速度***即物體遠離我們而去的速度***,得出了46 km/s的速度值 。