高二數學函式最基礎知識點

  函式是整個高中階段的數學學習的一條主線,下面是小編給大家帶來的,希望對你有幫助。

  高二數學一次函式知識點

  一、定義與定義式:

  自變數x和因變數y有如下關係:

  y=kx+b

  則此時稱y是x的一次函式。

  特別地,當b=0時,y是x的正比例函式。

  即:y=kx ***k為常數,k≠0***

  二、一次函式的性質:

  1.y的變化值與對應的x的變化值成正比例,比值為k

  即:y=kx+b ***k為任意不為零的實數 b取任何實數***

  2.當x=0時,b為函式在y軸上的截距。

  三、一次函式的影象及性質:

  1.作法與圖形:通過如下3個步驟

  ***1***列表;

  ***2***描點;

  ***3***連線,可以作出一次函式的影象——一條直線。因此,作一次函式的影象只需知道2點,並連成直線即可。***通常找函式影象與x軸和y軸的交點***

  2.性質:***1***在一次函式上的任意一點P***x,y***,都滿足等式:y=kx+b。***2***一次函式與y軸交點的座標總是***0,b***,與x軸總是交於***-b/k,0***正比例函式的影象總是過原點。

  3.k,b與函式影象所在象限:

  當k>0時,直線必通過一、三象限,y隨x的增大而增大;

  當k<0時,直線必通過二、四象限,y隨x的增大而減小。

  當b>0時,直線必通過一、二象限;

  當b=0時,直線通過原點

  當b<0時,直線必通過三、四象限。

  特別地,當b=O時,直線通過原點O***0,0***表示的是正比例函式的影象。

  這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

  四、確定一次函式的表示式:

  已知點A***x1,y1***;B***x2,y2***,請確定過點A、B的一次函式的表示式。

  ***1***設一次函式的表示式***也叫解析式***為y=kx+b。

  ***2***因為在一次函式上的任意一點P***x,y***,都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b …… ① 和y2=kx2+b …… ②

  ***3***解這個二元一次方程,得到k,b的值。

  ***4***最後得到一次函式的表示式。

  五、一次函式在生活中的應用:

  1.當時間t一定,距離s是速度v的一次函式。s=vt。

  2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函式。設水池中原有水量S。g=S-ft。

  六、常用公式:***不全,希望有人補充***

  1.求函式影象的k值:***y1-y2***/***x1-x2***

  2.求與x軸平行線段的中點:|x1-x2|/2

  3.求與y軸平行線段的中點:|y1-y2|/2

  4.求任意線段的長:√***x1-x2***^2+***y1-y2***^2 ***注:根號下***x1-x2***與***y1-y2***的平方和***

  高二數學二次函式知識點

  I.定義與定義表示式

  一般地,自變數x和因變數y之間存在如下關係:

  y=ax^2+bx+c

  ***a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.***

  則稱y為x的二次函式。

  二次函式表示式的右邊通常為二次三項式。

  II.二次函式的三種表示式

  一般式:y=ax^2+bx+c***a,b,c為常數,a≠0***

  頂點式:y=a***x-h***^2+k [拋物線的頂點P***h,k***]

  交點式:y=a***x-x?******x-x ?*** [僅限於與x軸有交點A***x? ,0***和 B***x?,0***的拋物線]

  注:在3種形式的互相轉化中,有如下關係:

  h=-b/2ak=***4ac-b^2***/4a x?,x?=***-b±√b^2-4ac***/2a

  III.二次函式的影象

  在平面直角座標系中作出二次函式y=x^2的影象,

  可以看出,二次函式的影象是一條拋物線。

  IV.拋物線的性質

  1.拋物線是軸對稱圖形。對稱軸為直線

  x= -b/2a。

  對稱軸與拋物線唯一的交點為拋物線的頂點P。

  特別地,當b=0時,拋物線的對稱軸是y軸***即直線x=0***

  2.拋物線有一個頂點P,座標為

  P*** -b/2a ,***4ac-b^2***/4a ***

  當-b/2a=0時,P在y軸上;當Δ= b^2-4ac=0時,P在x軸上。

  3.二次項係數a決定拋物線的開口方向和大小。

  當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4.一次項係數b和二次項係數a共同決定對稱軸的位置。

  當a與b同號時***即ab>0***,對稱軸在y軸左;

  當a與b異號時***即ab<0***,對稱軸在y軸右。

  5.常數項c決定拋物線與y軸交點。

  拋物線與y軸交於***0,c***

  6.拋物線與x軸交點個數

  Δ= b^2-4ac>0時,拋物線與x軸有2個交點。

  Δ= b^2-4ac=0時,拋物線與x軸有1個交點。

  Δ= b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數***x= -b±√b^2-4ac 的值的相反數,乘上虛數i,整個式子除以2a***

點選下一頁分享更多