數學樂園手抄報

  在社會的發展程序中,作為文化現象的數學,受到人們的重視,近年來,數學文化及其相關研究得到了較大發展。在確認數學是一種文化之後,應該進一步理解數學文化的內涵,在數學世界中,數學經歷了三次危機,大家知道嗎?

  :數學程序中的三次危機

  數學中過去的錯誤或者未解決的困難,是為它未來的發展提供了契機。——E.T.Bell

  數學的永遠令人神往的美貌之一就是,它的艱難的悖論是以栩栩生輝的方式使之得到美妙的結果。——P.J.Davis
 

關於數學的手抄報圖片

  :第三次數學危機

  數學素以精確嚴密的科學著稱,可是在數學發展的歷史長河中,仍然不斷地出現矛盾以及解決矛盾的鬥爭。從某種意義下講,數學就是要解決一些問題,問題不過矛盾的一種形式。有些問題得到了解決,比如任何正整數都可以表示為四個平方數之和;有些問題至今沒有得到解決,如哥德巴赫猜想:任何大偶數都再可以表表示為兩個素數之和。我們還很難說這個命題是對還是不對,因為隨便給一個偶數,經過有很多次試驗總可以得出結論,但是偶數有無窮多個,你窮畢生精力也不會驗證完。也許你能碰到到一個很大的偶數,找不到兩個素數之和等於它,不過即使這樣,你也難以斷言這種例外偶數是否有限多個,也就是某一個大偶數之後,上述歌德巴赫猜想成立。

  這就需要證明,而證明則要用有限的步驟解決涉及無窮的問題。藉助於計算機完成的四色定理的證明,首先也要把無窮多種可能的地圖歸結成有限的情形,沒有有限,計算機也是無能為力的。因此看出數學永遠迴避不了有限與無窮這對矛盾。只要無窮存在,你就要應付它。這可以說是數學矛盾的根源之一。在處理出現矛盾的過程中,數學家不可能不進行“創造”,這首先表現在產生新概念上,我們不妨先不管自然數。
 

關於數學的手抄報圖片

  為了解決實際問題、人們必須發明出“零”來,然後要造出負數、有理數、無理數乃至虛數。所謂虛,就是不實,憑空想象出來的意思,不過解代數方程有必要把它請進來,請進來後又覺得它不實在、不太放心。後來它用處很大,能解決非它不可的問題,於是轟也轟不走了。複數擠進數學王國之後,跟著四元數、八元數、超複數……都來了,它們可沒有複數都麼大的用處,甚至根本沒用。要還是不要呢?這也使數學家處於為難的境地。數學家經常處於這種矛盾的過程中。

  “什麼是存在?”,這是數學的一個基本問題。什麼東西可以擠進數學王國?直覺主義者規定一個較窄的限制:必須能夠一步一步構造出來;而形式主義者規定一個較寬的限制:只要沒有矛盾就行了。不過什麼叫沒有矛盾?當然邏輯沒有矛盾,其實就是遵守形式邏輯規律。可是形式邏輯是從人類有限經驗推出來的,對於無窮情形還靈不靈?這當然存在問題,可是不許推廣,那數學還能剩下多少靠得住的東西呢?

  在數學史上這種矛盾也是屢見不鮮的。無窮小量剛出現時,漏洞百出、無法自圓其說,可是行之有效、解決問題。所以達朗貝爾說:“前進,你就能恢復信心!”,這可以說是一種實用主義態度。十九世紀,柯西和維爾斯特拉斯用極限概念解決了矛盾,同時也扔掉了無窮小,這裡無矛盾性佔了上風。1961年,羅濱遜發明非標準分析,又把無窮小量請了回來,仍然沒有矛盾。不過它是建立在模型論基礎上,要承認非可數無窮基數的存在。

  承認無窮集合,承認無窮基數,就好象開啟潘朵拉的盒子,一切災難都出來了。這就是第三次數學危機的實質。儘管悖論可以消除,矛盾可以迴避,數學的確定性卻在一步一步喪失。最近莫利斯·克萊因寫了一本《數學—確定性的喪失》一書,就是講的這件事。現代公理集合論的一大堆公理簡直難說孰真孰假,可是又不能把它們一古腦兒消除掉,它們跟整個數學可是血肉相連的。所以第三次危機表面上解決了,實質上更深刻地以其它形式延續看。矛盾既然是固有的,它的激烈衝突—危機也會給數學帶來許多新內容,新認識,有時也帶來革命性的變化。

  把二十世紀的數學同前整個數學相比,內容不知豐富了多少,認識也不知深入了多少。在集合論的基礎上,誕生了抽象代數學、拓撲學、泛函分析與測度論。數理邏輯也興旺發達,成為數學有機整體的—部分。古代的代數幾何、微分幾何、複分析現在已經推廣到高維,代數數論的面貌也多次改變,變得越來越優美、完整。一系列經典問題完滿地得到解決,同時又產生更多的新問題。特別是二次大戰之後,新成果層出不窮,從未間斷。教學呈現無比興旺發達的景象,而這正是人們在同數學中矛盾鬥爭的產物。