如何把初中數學學好
初中數學學習內容有大幅度增加,課程難度也迅速提高,對學習方法、學習 能力的要求自然也更高.下面小編為你整理了學好初中數學方法,希望對你有幫助。
學好初中數學方法
1、全面複習,把書讀薄
全面複習不是生記硬背所有的知識,相反,是要抓住問題的實質和各內容各方法的本質聯絡,把要記的東西縮小到最小程度,***要努力使自已理解所學知識,多抓住問題的聯絡,少記一些死知識***,而且,不記則已,記住了就要牢靠,事實證明,有些記憶是終生不忘的,而其它的知識又可以在記住基本知識的基礎上,運用它們的聯絡而得到。這就是全面複習的含義。
2、突出重點,精益求精
在考試大綱的要求中,對內容有理解,瞭解,知道三個層次的要求;對方法有掌,會***能***兩個層次的要求,一般地說,要求理解的內容,要求掌握的方法,是考試的重點。在歷年考試中,這方面考題出現的概率較大;在同一份試卷中,這方面試題所佔有的分數也較多。"猜題"的人,往往要在這方面下功夫。一般說來,也確能猜出幾分來。但遇到綜合題,這些題在主要內容中含有次要內容。這時,"猜題"便行不通了。我們講的突出重點,不僅要在主要內容和方法上多下功夫,更重要的是要去尋找重點內容與次要內容間的聯絡,以主帶次,用重點內容擔挈整個內容。主要內容理解透了,其它的內容和方法迎刃而解。即抓出主要內容不是放棄次要內容而孤立主要內容,而是從分析各內容的聯絡,從比較中自然地突出主要內容。
3、基本訓練反覆進行
學習數學,要做一定數量的題,把基本功練熟練透,但我們不主張"題海"戰術,而是提倡精練,即反覆做一些典型的題,做到一題多解,一題多變。要訓練抽象思維能力,對些基本定理的證明,基本公式的推導,以及一些基本練習題,要作到不用書寫,就象棋手下"盲棋"一樣,只需用腦子默想,即能得到正確答案。這就是我們在常言中提到的,在20分鐘內完成10道客觀題。其中有些是不用動筆,一眼就能作出答案的題,這樣才叫訓練有素,"熟能生巧",基本功紮實的人,遇到難題辦法也多,不易被難倒。相反,作練習時,眼高手低,總找難題作,結果,上了考場,遇到與自己曾經作過的類似的題目都有可能不會;不少考生把會作的題算錯了,歸為粗心大意,確實,人會有粗心的,但基本功紮實的人,出了錯立即會發現,很少會"粗心"地出錯。
初中數學學好的幾點建議
一、閱讀理解目前初中學生學習數學存在一個嚴重的問題就是不善於讀數學教材,他們往往是死記硬背。重視閱讀方法對提高初中學生的學習能力是至關重要的。新學一個章節內容,先粗粗讀一遍,即瀏覽本章節所學內容的枝幹,然後一邊讀一邊勾,粗略懂得教材的內容及其重點、難點所在,對不理解的地方打上記號。然後細細地讀,即根據每章節後的學習要求,仔細閱讀教材內容,理解數學概念、公式、法則、思想方法的實質及其因果關係,把握重點、突破難點。再次帶著研究者的態度去讀,即帶著發展的觀點研討知識的來龍去脈、結構關係、編排意圖,並歸納要點,把書讀懂,並形成知識網路,完善認識結構,當學生掌握了這三種讀法,形成習慣之後,就能從本質上改變其學習方式,提高學習效率了。
二、提高聽課質量要培養會聽課,聽懂課的習慣。注意聽教師每節課強調的學習重點,注意聽對定理、公式、法則的引入與推導的方法和過程,注意聽對例題關鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節課最後的小結,這樣,抓住重、難點,沿著知識的發生發展的過程來聽課,不僅能提高聽課效率,而且能由“聽會”轉變為“會聽”。
三、有疑必問是提高學習效率的有效辦法學習過程中,遇到疑問,抓緊時間問老師和同學,把沒有弄懂,沒有學明白的知識,最短的時間內掌握。建立自己的錯題本,經常翻閱,提醒自己同樣的錯誤不要犯第二次。從而提高學習效率。
初中數學解題方法
1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函式的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定係數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較複雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理
一元二次方程ax2bxc=0***a、b、c屬於R,a≠0***根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程***組***,解不等式,研究函式乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函式,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定係數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的係數,而後根據題設條件列出關於待定係數的等式,最後解出這些待定係數的值或找到這些待定係數間的某種關係,從而解答數學問題,這種解題方法稱為待定係數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程***組***、一個等式、一個函式、一個等價命題等,架起一座連線條件和結論的橋樑,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法***結論的反面只有一種***與窮舉反證法***結論的反面不只一種***。用反證法證明一個命題的步驟,大體上分為:***1***反設;***2***歸謬;***3***結論。