怎樣提高數學題分數
做作業是學生鞏固知識,訓練方法,發展思維的重要的不可缺少的學習環節,它是在老師指導下進行的有目的學習活動。雖然作業天天做,但效果卻大不同。小編整理了做數學題的方法的方法,希望能幫助到您。
怎樣做數學題才能發揮最大效益
一,溫故知新,把握要領
先把書看透,把老師上課的內容回憶一遍再動手做作業。做作業前,首先溫故有關的知識,回顧概念,掌握要求,瞭解有關的注意事項,明確學習的目的,把握解題的規範化要求,然後再動手做作業,就心中有數,練中學,學中練,達到鞏固目的,強化了知識,提高了能力。
但事實上,我們許多同學沒有這個好習慣,拿到題目就做。這樣,首先是速度慢,效率低。另外,由於概念不清,有的概念理解錯誤,做了題目起不到應有的作用,甚至還有反作用,鞏固了錯誤,在相應方面形成了一個頑疾,為以後的高考衝刺埋下後患。
二,明確題意,構建思路
題海戰術的最大特點是以做題的數量作為標準,並期望以多取勝。由於高考升學的壓力,不少同學不知不覺的掉進題海,拿到題目不假思索,跟著感覺走,時常出現張冠李戴,答非所問等現象,也會出現漏解或者畫蛇添足,勞而無功。長期下去,最大的壞處是形成不嚴謹的思維習慣,不利於將來的發展。
審題是我們解題的前奏工作,不可忽視,在解題前必須審清題意,分析條件和結論,並且根據條件和結論進行聯想:以前遇到過類似或者部分類似的問題嗎?當時是用什麼方法解決的?在這裡還有效嗎?等等。通過聯想構建解題思路,設計解題程式,把握解題要點,為正確快速解題掃清障礙,奠定基礎。
三,限定時間,一氣呵成
常聽同學抱怨,作業太多,做不完了,有的同學為應付還不惜抄襲作業,影響優秀品質的形成。瞭解下來,問題大多是在時間安排上。覺得辛苦的同學,他們的作業都是在彈性的時間內完成,想做就做些,不想做就玩會兒;或者慢條斯理,認為時間還有的是,等會再完成。有一次,作業量並不大,可是有位同學居然沒完成,他坦誠的說,晚上應該花上半小時就完成,可是當走到電視前時,就自我安慰,看會吧,睡前再做,而到睡前又想起語文老師佈置的“週記”明天早自習要交,只有先寫週記,早自習再做吧,早自習外語老師來檢查背誦,所以就誤了事。
但是,大部分同學還是對數學作業高度重視,應對自如,甚至還學有餘力,額外做了些提高題,所以他們經常要求老師多佈置些作業。調查下來,有兩個是他們的共同特點:一是他們做作業限時完成,不拖拉,乾淨利落,遇到困難,待各項任務基本完成後,再進行鑽研。另一方面,他們做到了心動不如行動。他們拿到問題,常常是立即投入戰鬥,而不是去想今天有多少作業,需多少時間,難度是否太大,能不能完成得了等等。他們遇到難題是先能做多少就做多少,能解決到什麼程度就解決到什麼程度,當解決了問題的部分時,常常會閃出好念頭,悟出問題的解決方案。實際上每解決一點就是向目標*近一步,這就是“吹盡黃沙始得金”的道理。
四,做後反思,提高效益
有人說題海戰術是臭豆腐,聞的臭,吃的香。題海戰術既然被人普遍使用,肯定有它存在的道理,不能全盤否定。但是它的效益不高的弊端也是很明顯的。對它進行改進也是情理之中,實踐證明解題後反思是提高效益的有效途徑。
首先要反思題意。前面已經介紹了審題的重要性,這裡不再詳述。
其次要反思錯誤。要用批評的眼光去看待自己的解題過程,看看思路是否有問題,概念使用是否正確,計算是否有失誤,思考是否周密等等。有時需要從不同的角度去思考,不同的方法去演算更能發現問題。千萬別把檢查答案當成“自我欣賞”,那麼肯定發現不了錯誤,發現不了錯誤當然就談不上克服錯誤了。
第三要反思方法。解完題後再思考,由於對這個問題的認識有了一定的高度,所以思考出的新方法常常更為簡捷,巧妙,在很大程度上能激勵我們的信心,即使我們發現不了巧思妙解,在思考過程中我們回顧了相關知識,嘗試了許多方法,收穫仍不可小視。
最後還要反思變化。研究性學習已經進入高考,提高探究創新能力已經刻不容緩。許多經典的數學問題可以進行變化,創設探究的契機。這些,大家只要利用原來問題的解題思路進行探索,知道他們都是周期函式。這樣,我們解一題會一類,並訓練了探究,創新能力,較大限度提高了解題的效益。
高中數學最強“偷分”技能
1.圓錐曲線中最後題往往聯立起來很複雜導致k算不出,這時你可以取特殊值法強行算出k過程就是先聯立,後算代爾塔,用下偉達定理,列出題目要求解的表示式,就ok了。
2.選擇題中如果有算錐體體積和表面積的話,直接看選項面積找到差2倍的小的就是答案,體積找到差3倍的小的就是答案,屢試不爽!
3.三角函式第二題,如求a***cosB+cosC***/***b+c***coA之類的先邊化角然後把第一題算的比如角A等於60度直接假設B和C都等於60°帶入求解。省時省力!
4.空間幾何證明過程中有一步實在想不出把沒用過的條件直接寫上然後得出想不出的那個結論即可。如果第一題真心不會做直接寫結論成立則第二題可以直接用!用常規法的同學建議先隨便建立個空間座標系,做錯了還有2分可以得!
5.立體幾何中第二問叫你求餘弦值啥的一般都用座標法!如果求角度則常規法簡單!
6.選擇題中考線面關係的可以先從D項看起,前面都是來浪費你時間的
7.選擇題中求取值範圍的直接觀察答案從每個選項中取與其他選項不同的特殊點帶入能成立的就是答案
8.線性規劃題目直接求交點帶入比較大小即可
9.遇到這樣的選項 A.1/2 B.1 C.3/2 D.5/2 這樣的話答案一般是D因為B可以看作是2/2 前面三個都是出題者湊出來的 如果答案在前面3個的話 D應該是2***4/2***
怎麼樣,是不是感覺媽媽再也不擔心你的數學了。
以上只是一些小技巧,數學想在不會的情況下再多拿一些分,還需要在大題上多拿分。
大題文科第一題一般是三角函式題,第一步一般都是需要將三角函式化簡成標準形式Asin***ωx+φ***+c
接下來按題做就行了,注意二倍角的降冪作用以及輔助角***合一***公式,週期公式,對稱軸、對稱中心、單調區間、最大值、最小值都是用整體法求解。求最值時通過自變數的範圍推到裡面整體u=ωx+φ 的範圍,然後可以直接畫sinu的影象,避免畫平移的影象。
這部分題還有一種就是解三角形的問題,運用正弦定理、餘弦定理、面積公式,通常有兩個方向,即角化成邊和邊化成角,得根據具體問題具體分析哪個方便一些,遇到複雜的題就把未知量列成未知數,根據定理列方程組,然後解方程組即可。
理科如果考數列題的話,注意等差、等比數列通項公式、前n項和公式;證明數列是等差或等比直接用定義法***後項減前項為常數/後項比前項為常數***,求數列通項公式,如為等差或等比直接代公式即可,其它的一般注意型別採用不同的方法***已知Sn求an、已知Sn與an關係求an***前兩種都是利用an=Sn-Sn-1,注意討論n=1、n>1***,累加法、累乘法、構造法***所求數列本身不是等差或等比,需要將所求數列適當變形構造成新數列lamt,通過構造一個新數列使其為等差或等比,便可求其通項,再間接求出所求數列通項***;
數列的求和第一步要注意通項公式的形式,然後選擇合適的方法***直接法、分組求和法、裂項相消法、錯位相減法、倒序相加法等***進行求解。如有其它問題,注意放縮法證明,還有就是數列可以看成一個以n為自變數的函式。
第二題是立體幾何題,證明題注意各種證明型別的方法***判定定理、性質定理***,注意引輔助線,一般都是對角線、中點、成比例的點、等腰等邊三角形中點等等,理科其實證明不出來直接用向量法也是可以的。計算題主要是體積,注意將字母換位***等體積法***;
線面距離用等體積法。理科還有求二面角、線面角等,用建立空間座標系的方法***向量法***比較簡單,注意各個點的座標的計算,不要算錯。
第三題是概率與統計題,主要有頻率分佈直方圖,注意縱座標***頻率/組距***。求概率的問題,文科列舉,然後數數,別數錯、數少了啊,概率=滿足條件的個數/所有可能的個數;
理科用排列組合算數。獨立性檢驗根據公式算K方值,別算錯數了,會查表,用1減查完的概率。迴歸分析,根據資料代入公式***公式中各項的意義***即可求出直線方程,注意***x平均,y平均***點滿足直線方程。理科還有隨機變數分佈列問題,注意列表時把可能取到的所有值都列出,別少了,然後分別算概率,最後檢查所有概率和是否是1,不是1說明要不你概率算錯了,要不隨機變數數少了。
第四題是函式題,第一步別忘了先看下定義域,一般都得求導,求單調區間時注意與定義域取交。看看題型,將題型轉化一下,轉化到你學過的內容***利用導數判斷單調性***含引數時要利用分類討論思想,一般求導完通分完分子是二次函式的比較多,討論開口a=0、a<;0、a>;0和後兩種情況下δ<;=0、δ>;0***
求極值***根據單調區間列表或畫影象簡圖***、求最值***所有的極值點與兩端點值比較***等***,典型的有恆成立問題、存在問題***注意與恆成立問題的區別***,不管是什麼都要求函式的最大值或最小值,注意方法以及比較定義域端點值,注意函式圖象***數形結合思想:求方程的根或解、曲線的交點個數***的運用。
證明有關的問題可以利用證明的各種方法***綜合法、分析法、反證法、理科的數學歸納法***。多問的時候注意後面的問題一般需要用到前面小問的結論。抽象的證明問題別光用眼睛在那看,得設出裡面的未知量,通過設而不求思想證明問題。
第五題是圓錐曲線題,第一問求曲線方程,注意方法***定義法、待定係數法、直接求軌跡法、反求法、引數方程法等等***。一定檢查下第一問算的數對不,要不如果算錯了第二問做出來了也白算了。
第二問有直線與圓錐曲線相交時,記住“聯立完事用聯立”,第一步聯立,根據韋達定理得出兩根之和、兩根之差、因一般都是交於兩點,注意驗證判別式>;0,設直線時注意討論斜率是否存在。
第二步也是最關鍵的就是用聯立,關鍵是怎麼用聯立,即如何將題裡的條件轉化成你剛才聯立完的x1+x2和x1x2,然後將結果代入即可,通常涉及的題型有
弦長問題***代入弦長公式***、
定比分點問題***根據比例關係建立三點座標之間的一個關係式***橫座標或縱座標***,再根據根與係數的關係建立圓錐曲線上的兩點座標的兩個關係式,從這三個關係式入手解決***、
點對稱問題***利用兩點關於直線對稱的兩個條件,即這兩點的連線與對稱軸垂直和這兩點的中點在對稱軸上***、
定點問題***直線y=kx+b過定點即找出k與b的關係,如b=5k+7,然後將b代入到直線方程y=kx+5k+7=k***x+5***+7即可找出定點***-5,7******、
定值問題***基本思想是函式思想,將要證明或要求解的量表示為某個合適變數***斜率、截距或座標***的函式,通過適當化簡,消去變數即得定值。***、
最值或範圍問題***基本思想還是函式思想,將要求解的量表示為某個合適變數***斜率、截距或座標***的函式,利用函式求值域的方法***首先要求變數的範圍即定義域—別忘了delt>;0,然後運用求值域的各種方法—直接法、換元法、影象法、導數法、均值不等式法***注意驗證“=”***等***求出最值***最大、最小***,即範圍也求出來了***。
抽象的證明問題別光用眼睛在那看,得設出裡面的未知量,通過設而不求思想證明問題。