電流形成的條件

  一般規定正電荷移動的方向為電流的正方向,那麼你知道是什麼嗎?小編在此整理了介紹,供大家參閱,希望大家在閱讀過程中有所收穫!

  介紹

  電荷的定向移動產生電流,不論是正電荷***陽離子,半導體中的空穴***還是負電荷***陰離子,電子***。導電的是金屬或者半導體器件的話原子是不會發生化學變化的,因為失去了的電子還會從別的地方補回來。 但是如果導電的是離子,那麼離子在電極處是會電離成原子而附著在電極上的,發生化學變化。

  正電荷也會移動的,最容易想象的就是陽離子,在導電溶液中移動。規定正電荷移動方向為電流方向是因為方便,如計算的時候你把負電荷代入計算就得到負值,可知電流方向是與負電荷移動方向是反向的。

  在電磁學裡, 稱帶有電荷的物質為“帶電物質”。兩個帶電物質之間會互相施加作用力於對方,也會感受到對方施加的作用力,所涉及的作用力遵守庫侖定律。電荷分為兩種,“正電荷”與“負電荷”。帶有正電荷的物質稱為“帶正電”;帶有負電荷的物質稱為“帶負電”。假若兩個物質都帶有正電或都帶有負電,則稱這兩個物質“同電性”,否則稱這兩個物質“異電性”。兩個同電性物質會相互感受到對方施加的排斥力;兩個異電性物質會相互感受到對方施加的吸引力。

  電荷是許多次原子粒子所擁有的一種基本守恆性質。稱帶有電荷的粒子為“帶電粒子”。靜止的帶電粒子會產生電場,移動中的帶電粒子會產生電磁場,帶電粒子也會被電磁場所影響。一個帶電粒子與電磁場之間的相互作用稱為電磁力或電磁相互作用。這是四種基本相互作用中的一種。

  電池提供電壓,這點沒有疑問。在電源電壓之下,導體內產生電場,電荷在電場的作用下移動,形成電流。但是電流要持續,那麼電池必須提供電子,否則導線內的電子都跑光了!但是導線中的電子又跑到哪裡去了呢?毫無疑問跑到電源去了。所以電子從電源跑出來又跑回到電源去,電路斷開後導線不帶電,可見導線的電子沒加沒減,那麼電池的電子也必然沒多沒少。所以電池不提供電子不消耗電子。電池只提供電壓。

  兩點間電場強度的線積分。電壓代表電場力對單位正電荷由場中一點移動到另一點所做的功。在國際單位制中其主單位為伏[特]***V***。電壓的定義式為Uab=∫***b,a***Edl。式中Uab代表a點與b點之間的電壓,E 為電場強度,dl為積分路徑上的線元。如果上式為正值,則Uab為自a到b的電壓降落***簡稱壓降***;若上式為負值,則Uab為電壓升高***簡稱壓升***。

  在一靜電場中,每一點對指定的參考點有一定的電位,兩點之間的電壓就是它們的電位差。即Uab=φa-φb。式中φa、φb分別為a點和b點的電位。兩點間的電壓或電位差與電位參考點的選擇無關。

  在時變電磁場中,電場不僅有庫侖定律所描述的庫侖電場,還有由電磁感應所產生的感應電場。感應電場的路積分值因路徑而異,即兩點間沿不同路徑可以有不同電壓。電工裝置中一種絕緣結構通常只能承受小於某規定數值的電壓,否則將導致絕緣擊穿而損壞。在導體中的電流密度隨著電場強度的增加而變大。若電壓過高將使溫度急劇升高亦可能造成損壞。反之,電壓不足又使裝置不能正常執行甚至造成事故。

  電流的焦耳定律

  焦耳定律是定量說明傳導電流將電能轉換為熱能的定律。內容是:電流通過導體產生的熱量跟電流的二次方成正比,跟導體的電阻成正比,跟通電的時間成正比。焦耳定律數學表示式:Q=I^2R*t***適用於所有電路***;對於純電阻電路可推匯出:Q=W=Pt;Q=UIt;Q=***U^2/R***t

  焦耳定律規定:電流通過導體所產生的熱量和導體的電阻成正比,和通過導體的電流的平方成正比,和通電時間成正比。該定律是英國科學家焦耳於1841年發現的。焦耳定律是一個實驗定律,它可以對任何導體來適用,範圍很廣,所有的電路都能使用。遇到電流熱效應的問題時,例如要計算電流通過某一電路時放出熱量;比較某段電路或導體放出熱量的多少,即從電流熱效應角度考慮對電路的要求時,都可以使用焦耳定律。

  從焦耳定律公式可知,電流通過導體產生的熱量跟電流強度的平方成正比、跟導體的電阻成正比、跟通電時間成正比。若電流做的功全部用來產生熱量。即W=UIt。根據歐姆定律,有W=I²Rt。

  需要說明的是W=***U^2/R***t是從歐姆定律推匯出來的,只能在電流所做功將電能全部轉化為熱能的條件下才成立***純電阻電路***。例如對電爐、電烙鐵這類用電器,這兩公式和焦耳定律才是等效的。

  使用焦耳定律公式進行計算時,公式中的各物理量要對應於同一導體或同一段電路,與歐姆定律使用時的對應關係相同。當題目中出現幾個物理量時,應將它們加上角碼,以示區別。

  注意:W=I²Rt=Pt適用於所有電路,而W=UIt=***U^2/R***t只用於純電阻電路***全部用於發熱***。