四年級數學上冊第三單元手抄報
數學手抄報不知道該怎麼做?沒事,小編來幫你。下面是小編為大家帶來的圖片及資料,希望大家喜歡。
資料1:四年級數學知識點
①位置***座標、平移後的座標*** ②分數乘法***分數乘法及運算定律、解決問題、“倍”、倒數的認識*** ③分數除法***分數除法,解決問題,比和比的應用*** ④圓***圓的認識、圓的特徵、圓的周長和麵積*** ⑤百分數***百分數的意義和寫法、百分數與分數小數的互化、解決問題、折扣和納稅*** ⑥統計***條形統計圖與扇形統計圖認識和資料分析、合理存款*** ⑦數學廣角***雞兔同籠*** ⑧總複習
數學的手抄報圖片一
資料***一*** 楊輝主要著述
楊輝一生留下了大量的著述,它們是:《詳解九章演算法》12卷***1261年***,《日用演算法》2卷***1262年***,《乘除通變本末》3卷***1274年,第3卷與他人合編***,《田畝比類乘除捷法》2卷***1275年***,《續古摘奇演算法》2卷***1275年,與他人合編***,其中後三種為楊輝後期所著,一般稱之為《楊輝演算法》。
《詳解九章演算法》現傳本已非全帙,編排也有錯亂。從其序言可知,該書乃取魏劉微注、唐李淳風等註釋、北宋賈憲細草的《九章算術》中的80問進行詳解。在《九章算術》9卷的基礎上,又增加了3卷,一卷是圖,一卷是講乘除演算法的,居九章之前;一卷是纂類,居書末今卷首圖、卷l乘除,卷2方田、卷3粟米、卷4衰分的衰分、反衰諸題、卷6商功的諸同功問題已佚。卷4衰分下半卷、卷5少廣存《永樂大典》殘卷中,其餘存《宜稼堂叢書》中。從殘本的體例看,該書對《九章算術》的詳解可分為:一、解題。內容為解釋名詞術語、題目含義、文字校勘以及對題目的評論等方面。二、明法、草。在編排上,楊輝採用大字將賈憲的法、草與自己的詳解明確區分出來。三、比類。選取與《九章算術》中題目演算法相同或類似的問題作對照分析。四、續釋注。在前人基礎上,對《九章算術》中的80問進一步作註釋。楊輝的“纂類”,突破《九章算術》的分類格局,按照解法的性質,重新分為乘除、分率、合率、互換、衰分、疊積、盈不足、方程、勾股九類。
數學的手抄報圖片二
楊輝在《詳解九章演算法》一書中還畫了一張表示二項式展開後的係數構成的三角圖形,稱做“開方做法本源”,現在簡稱為“楊輝三角”。
楊輝三角是一個由數字排列成的三角形數表,一般形式如下:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
.....................................
楊輝三角最本質的特徵是,它的兩條斜邊都是由數字1組成的,而其餘的數則是等於它肩上的兩個數之和。
《日用演算法》,原書不傳,僅有幾個題目留傳下來。從《演算法雜錄》所引楊輝自序可知該書內容梗概:“以乘除加減為法,秤鬥尺田為問,編詩括十三首,立圖草六十六問。用法必載源流,命題須責實有,分上下卷。”該書無疑是一本通俗的實用算書。
《乘除通變本末》三卷,皆各有題,在總結民間對等算乘除法的改進上作出了重大貢獻。上卷叫《演算法通變本末》,首先提出“習算綱目”,是數學教育史的重要文獻,又論乘除演算法;中卷叫《乘除通變算寶》,論以加減代乘除、求一、九歸諸術;下卷叫《法算取用本末》,是對中卷的註解。
《田畝比類乘除捷法》,其上卷內容是《詳解九章演算法》方田章的延展,所選例子非常貼近實際。下卷主要是對劉益工作的引述。楊輝在《田畝比類乘除捷法》序中稱“中山劉先生作《議古根源》。……撰成直田演段百間,信知田體變化無窮,引用帶從開方正負損益之法,前古之所未聞也。作術逾遠,罔究本源,非探噴索隱而莫能知之。輝擇可作關鍵題問者重為詳悉著述,推廣劉君垂訓之意。”《田畝比類乘除捷法》卷下徵引了《議古根源》22個問題,主要是二次方程和四次方程的解法。
《續古摘奇演算法》上卷首先列出20個縱橫圖,即幻方。其中第一個為河圖,第二個為洛書,其次,四行、五行、六行、七行、八行幻方各兩個,九行、十行幻方各一個,最後有“聚五”“聚六”:聚八”“攢九”“八陣”“連環”等圖。有一些圖有文字說明,但每一個圖都有構造方法,使圖中各自然數“多寡相資,鄰壁相兼”湊成相等的和數。卷下評說《海島》也有極高的科學價值。
楊輝著作大都注意應用算術,淺近易曉。其著作還廣泛徵引數學典籍和當時的算書,中國古代數學的一些傑出成果,比如劉益的“正負開方術”,賈憲的“開方作法本源圖”“增乘開方法,”幸得楊輝引用,否則,今天將不復為我們知曉。
資料***二***楊輝主要研究成果
楊輝的數學研究與數學教育工作之重點在於改進籌算乘除計算技術,總結各種乘除捷演算法,這是由當時的社會狀況決定的。唐代中期以後,社會經濟得到較大發展,手工業和商業交易都具有相當的規模,因而,人們在生產、生活中需要數學計算的機會,較前大大增加,這種情況迫切要求數學家們為人們提供便於掌握、快捷準確的計算方法。為適應社會對數學的這種需求,中晚唐時期出現了一些實用的算術書籍。但是,這些書籍除了《韓延算術》,被宋人誤認為《夏侯陽算經》而刊刻流傳到現在外,都已失傳。《韓延算術》大約編寫於公元770年前後,書中介紹了很多乘除捷法的例子。比如,某數乘以42可以化為某數乘以6,再乘以7;某數除以12可以化為某數除以2,再除以6。對於更復雜的問題可同樣處理。通過將乘數、除數分解為一位數,可以使運算在一行內實現,簡化了運算,提高了速度。韓延還介紹了其他一些簡捷演算法。比如“身外新增四”、“隔位加二”。北京科學家沈括也總結了增成、重因等捷演算法。
楊輝生活在南宋商業發達的蘇杭一帶,進一步發展了乘除捷演算法。他說:“乘除者本鉤深致遠之法。《指南演算法》以‘加減’、‘九歸’、‘求一’旁求捷徑,學者豈容不曉,宜兼而用之。”在前人的基礎上,他提出了“相乘六法”:一曰“單因”,即乘數為一位數的乘法;二曰“重因“,即乘數可分解為兩個一位數的乘積的乘法;三曰“身前因”,即乘數末位為一的兩位數乘法,比如257×21=257×20十257,實際上,身前因就是通過乘法分配律將多位數乘法化為一位數乘法和加法來完