清華大學牛人學習數學的方法有哪些
學習數學不僅要有強烈的學習願望和學習熱情,而且還要有科學的學習方法,才可能把數學學好。以下是小編分享給大家的清華大學牛人學習數學的方法的資料,希望可以幫到你!
清華大學牛人學習數學的方法一
預習、聽課、複習、作業的方法
1、預習的方法
預習是上課前對即將要上的數學內容進行閱讀,瞭解其梗概,做到心中有數,以便於掌握聽課的主動權。預習是獨立學習的嘗試,對學習內容是否正確理解,能否把握其重點、關鍵,洞察到隱含的思想方法等,都能及時在聽課中得到檢驗、加強或矯正,有利於提高學習能力和養成自學的習慣,所以它是數學學習中的重要一環。
數學具有很強的邏輯性和連貫性,新知識往往是建立在舊知識的基礎上。因此,預習時就要找出學習新知識所需的知識,並進行回憶或重新溫習,一旦發現舊知識掌握得不好,甚至不理解時,就要及時採取措施補上,克服因沒有掌握好或遺忘帶來的學習障礙,為順利學習新內容創造條件。
預習的方法,除了回憶或溫習學習新內容所需的舊知識***或預備知識***外,還應該瞭解基本內容,也就是知道要講些什麼,要解決什麼問題,採取什麼方法,重點關鍵在哪裡,等等。預習時,一般採用邊閱讀、邊思考、邊書寫的方式,把內容的要點、層次、聯絡劃出來或打上記號,寫下自己的看法或弄不懂的地方與問題,最後確定聽課時要解決的主要問題或打算,以提高聽課的效率。在時間的安排上,預習一般放在複習和作業之後進行,即做完功課後,把下次課要學的內容看一遍,其要求則根據當時具體情況靈活掌握。如果時間允許,可以多思考一些問題,鑽研得深入一些,甚至可做做練習題或習題;時間不允許,可以少一些問題,留給聽課去解決的問題就多一些,不必強求一律。
2、聽課的方法
聽課是學習數學的主要形式。在教師的指導、啟發、幫助下學習,就可以少走彎路,減少困難,能在較短的時間內獲得大量系統的數學知識,否則事倍功半,難以提高效率。所以聽課是學好數學的關鍵。
聽課的方法,除在預習中明確任務,做到有針對性地解決符合自己的問題外,還要集中注意力,把自己思維活動緊緊跟上教師的講課,開動腦筋,思考教師怎樣提出問題,分析問題,解決問題,特別要從中學習數學思維的方法,如觀察、比較、分析、綜合、歸納、演繹、一般化、特殊化等,就是如何運用公式、定理,瞭解其中隱含著的思想方法。
聽課時,一方面理解教師講的內容,思考或回答教師提出的問題,另一方面還要獨立思考,鑑別哪些知識已經聽懂,哪些還有疑問或有新的問題,並勇於提出自己的看法。如果課內一時不可能解決,就應把疑問或問題記下,留待自己去解決或請教老師,並繼續專心聽老師講課,切勿因一處沒有聽懂,思維就停留在這裡,而影響後面的聽課。一般,聽課時要把老師講課的要點、補充的內容與方法記下,以備複習之用。
3、複習的方法
複習就是把學過的數學知識再進行學習,以達到深入理解、融會貫通、精煉概括、牢固掌握的目的。複習應與聽課緊密銜接、邊閱讀教材邊回憶聽課內容或檢視課堂筆記,及時解決存在的知識缺陷與疑問。對學習的內容務求弄懂,切實理解掌握。如果有的問題經過較長時間的思索,還得不到解決,則可與同學商討或請老師解決。
複習還要在理解教材的基礎上,溝通知識間的內在聯絡,找出其重點、關鍵,然後提煉概括,組成一個知識系統,從而形成或發展擴大數學認知結構。
複習是對知識進行深化、精煉和概括的過程,它需要通過手和腦積極主動地開展活動才能達到,因此,在這個過程中,提供了發展和提高能力的極好機會。數學的複習,不能僅停留在把已學的知識溫習記憶一遍的要求上,而要去努力思考新知識是怎樣產生的,是如何展開或得到證明的,其實質是什麼,怎樣應用它等。
4、作業的方法
數學學習往往是通過做作業,以達到對知識的鞏固、加深理解和學會運用,從而形成技能技巧,以及發展智力與數學能力。由於作業是在複習的基礎上獨立完成的,能檢查出對所學數學知識的掌握程度,能考查出能力的水平,所以它對於發現存在的問題,困難,或做錯的題目較多時,往往標誌著知識的理解與掌握上存在缺陷或問題,應引起警覺,需及早查明原因,予以解決。
通常,數學作業表現為解題,解題要運用所學的知識和方法。因此,在做作業前需要先複習,在基本理解與掌握所學教材的基礎上進行,否則事倍功半,花費了時間,得不到應有的效果。
解題,要按一定的程式、步驟進行。首先,要弄清題意,認真讀題,仔細理解題意。如哪些是已知的資料、條件,哪些是未知數、結論,題中涉及到哪些運算,它們相互之間是怎樣聯絡著的,能否用圖表示出來,等等,要詳加推敲,徹底弄清。
其次,在弄清題意的基礎上,探索解題的途徑,找出已知與未知,條件與結論之間的聯絡。回憶與之有關的知識方法,學過的例題、解過的題目等,並從形式到內容,從已知數、條件到未知數、結論,考慮能否利用它們的結果或方法,可否引進適當輔助元素後加以利用是否能找出與該題有關的一個特殊問題或一個類似問題,考察解決它們對當前問題有什麼啟發;能否把分開,一部分一部分加以考察或變更,再重新組合,以達到所求結果,等等。這就是說,在探索解題過程中,需要運用聯想、比較、引入輔助元素、類比、特殊化、一般化、分析、綜合等一系列方法,並從解題中學會這一系列探索的方法。
第三,根據探索得到的解題方案,按照所要求的書寫格式和規範,把解的過程敘述出來,併力求簡單、明白、完整。最後還要對解題進行回顧,檢查解答是否正確無誤,每步推理或運算是否立論有據,答案是否說盡無遺;思考一下解題方法可否改進或有否新的解法,該題結果能否推廣***事實上中學課本中不少題目是可以推廣的***等,並小結一下解題的經驗,進而發展與完善解題的思想方法,總結出帶有規律性的東西來。
清華大學牛人學習數學的方法二
“由薄到厚”和“由厚到薄”的學習方法
“由薄到厚”和“由厚到薄”是數學家華羅庚多次提到的治學方法,他認為學習要經過“由薄到厚”和“由厚到薄”的過程。“由薄到厚”是理解和弄懂所學的數學知識,知其然並知其所以然。學習不僅要理解和記住概念、定理、公式、法則等,而且還要想一想它們是如何得來的,與前面的知識是怎樣聯絡著的,表達中省略了什麼,關鍵在哪裡,對知識是否有新的認識,有否想到其他的解法等等。這樣細加分析、考慮後,就會對內容增添某些註解,補充一些的解法或產生新的認識等,出現了“書越讀越厚”。
但是學習不能到此止步,還需要把學過內容貫串起來,加以融會貫通,提煉出它的精神實質,抓住重點、線索和基本思想方法,組織整理成精煉的內容,這就是一個“由厚到薄”的過程。在這過程中,不是量的減少,而是質的提高,所以具有更重要的作用。通常在總結一章、幾章或一本書的內容時,就要有這種要求,運用這種方法。這時由於知識出現高度概括,就更能促進知識的遷移,也更有利於進一步學習。
“由薄到厚”和“由厚到薄”是一個螺旋上升的過程,它具有不同的層次和要求,學習中需要經過從低到高多次的運用,才能收到應有的效果。這一學習方法體現著“分析”與“綜合”、“發散”與“收斂”的辯證統一,就是說數學學習需要這兩者統一起來。
清華大學牛人學習數學的方法三
接受學習與發現學習相結合的方法
數學學習應是有意義接受學習和有意義發現學,如何使兩者互相配合、有機結合,充分 發揮各自和綜合的效力這是學習方法的一個重要方面。
接受學習,不論是聽系統的講授,還是以定論的形式給出的教材,都不涉及任何的獨立發現。但在學習過程中,學生處於積極、主動的狀態,並非只是單純的接受,他們總不斷地向自己提出問題,如定理是如何發現或產生的,證明的思路是怎樣想出來的,中間要攻破哪幾個關鍵的地方。許多數學家都十分強調“應該不只脹到書面上,而且還要看到書背後的東西。”在進行接受學習時,還要增添某些發現學習的萬分,從中學習創造、發明的思想和方法,而不僅僅停留在知識的接受上。
發現學習,是依靠自己對所提供的材料或問題的觀察、比較、分析、綜合等,獨立地了現的解決某問題,從而獲得新知識。在解決問題時,要真正理解問題中所涉及的要領、原理、公式、定理和法則,懂得每步操作的意義,以及提出假設、檢驗假設的目的等。解決問題,總需要聯想以往學習過和知識與方法,一時回憶不起來的,還要重新複習,以求進一步理解的應用。有是遇到困難問題,甚至還在檢視參考書或請教老師者能解決。可見,這期間也穿插著接受學習。
數學學習既需要接受學習,以便在短時間內獲得大量前人積累起來的寶貴知識財富,也需要發現學習,以利於思維、培養創造能力。因此,學習要根據自身的年齡、學習能力特點和教學內容的要求,使兩者緊密結合起來。