變形機制
[拼音]:youxianyuan fangfa
[英文]:finite element method
求解微分方程,特別是橢圓型邊值問題的一種離散化方法,其基礎是變分原理和剖分逼近。有限元方法是傳統的裡茨-加廖金方法的發展,並融會了差分法的優點,處理上統一,適應能力強,已廣泛應用於科學與工程中龐大複雜的計算問題。
作為有限元方法出發點的變分原理,是表達物理基本定律的一種普遍形式。其表述可概括如下:給出一個依賴物理狀態v的變數J(v)(v是函式,J(v)在數學上稱為泛函),同時給出J(v)的容許函式集V,即一切可能的物理狀態,則真實的狀態是V中使J(v)達到極小值的函式。剖分逼近是有限元離散化的手段,把問題的整體(即求解域)剖分為有限個基本塊,稱為“單元”,然後通過單元上的插值逼近,得到一個結構簡單的函式集,稱為“有限元空間”,它一般是容許函式集V的子集或有某種聯絡。有限元方法就是在這個有限元空間中尋找J(v)的極小解作為近似解。
典型問題
為具體說明有限元方法,討論二維有界域Ω上的橢圓型方程
, (1)
變係數 β表示介質不均勻。物理學中許多平衡態或定常態問題都可歸結為這個典型方程。與方程(1)相配的有如下三類邊界條件:
第一類:
;
第二類:
;
第三類:
。這裡的φ、g及α均為定義在邊界дΩ上的已知函式,
表示外法嚮導數,第二類邊界條件是第三類當 α=0時的特例。
為說明有限元方法能統一處理複雜的情況,假定討論的問題是混合邊值,並且介質有間斷,即дΩ分成Г0和Г1兩部分,分別有邊界條件
, (2)
,(3)
β(x,y)有間斷線,把Ω分為Ω-,Ω+兩部分,在間斷線上微分方程(1)無定義,而代之以接觸條件
, (4)
及
表示間斷線上分別指向Ω+及Ω-的法嚮導數。
變分原理
與微分方程(1)及附加條件(2)、(3)、(4)的邊值問題相對應的是物理學中的極小能量原理。構造“能量積分”
並取J(v)的容許函式集V為一切滿足邊界條件(2)且一階偏導數平方可積的函式,則使J(v)達到極小值的u,即
,(6)
也必滿足方程(1)及(2)、(3)、(4)。事實上,極小能量原理之類的變分原理是物理問題的原始形式,微分方程是數學推導的結果。在變分問題中,只有邊界條件(2)是強加到容許函式集上的,邊界條件(3)及間斷介質的接觸條件(4)都是極小解u自然滿足的,這種情況有利於離散化的統一處理。
剖分逼近
幾何剖分的基本單元可取為三角形、矩形、四邊形、曲邊形等等,其中三角形最基本常用。
假定問題的求解區域為多邊形,介質間斷線為折線,作三角剖分如圖
所示。在剖分中需注意介質間斷線與某些三角形的邊重合,不同類邊界條件的交點與某些三角形的頂點重合。單元的頂點稱為網格結點,在дΩ上稱邊界結點,在Ω內稱內結點。
幾何剖分之後考慮插值逼近。對三角形單元最簡單的是線性插值,即利用每個單元Δk三頂點的函式值確定線性函式αkx+bky+сk的三個係數。 把所有單元{Δk}確定的{αkx+bky+сk}合在一起,就得到Ω上的一個分片線性插值函式。Г0上的邊界結點取值為零的分片線性插值函式都屬於問題(5)、(6)的容許函式集V,全體這樣的函式構成一個有限維線性空間
,稱為有限元空間。假定內結點和Г1上的邊界結點共有N個,以pj(j=1,…,N)表示,則
的維數就是No 令φi表示
中滿足條件
(7)
的成員,則{φi}構成線性空間
的一組基。
中任意函式v,都可表為
, (8)
Vj是結點pj上的函式值v(pj)。
單元上的插值方式除了用一次函式外,還可以用二次、三次或更高次的多項式,也可用非多項式函式。插值資料除了用函式值的拉格朗日型外,還可以是包括導數的埃爾米特型插值。種種的幾何剖分加上種種的插值方式,就產生眾多形式的有限元空間,使有限元方法可有眾多的選擇。
有限元的離散化
有限元離散化的出發點是與微分方程等價的變分問題。對於典型問題來說,就是從(5)、(6)出發,用剖分逼近的方法構造有限元空間
(也稱試探函式空間),然後求泛函J(v)在
中的極小解堚 作為近似解,即堚滿足
, (9)
把(8)的表達公式
代入(5)中的J(v),得
,(10)
式中
,(11)
,(12)
把(9)的極小解表為
,則(U1,U2,…,UN)使二次函式(10)達到極小,由微分學知滿足線性方程組
。(13)
方程組(13)來自正定二次函式的極小解問題,故係數矩陣一定對稱正定。由於基函式φi只在以pi為頂點的單元上不為零,故係數αij=
只當結點pi與pj連成三角形一邊時才不為零。係數矩陣這種稀疏性質,加上對稱正定,對方程的求解很有利。
係數
以及自由項
的實際計算,通常按所謂單元分析與總體合成的方式進行。即逐個分析Ω內的單元和Г1上的單元邊對有關的 αiz及ƒi的貢獻,然後往上迭加。當Ω內所有單元及Г1上所有單元邊都分析之後,方程組(13)的係數矩陣及自由項也就合成出來。間斷介質的影響反映在單元分析中被積函式的β在Ω+及Ω-取不同的表示式。單元分析通常都採用某種數值積分公式計算。
從虛功原理出發的離散化
微分方程邊值問題 (1)、(2)、(3)、(4)的解u還同時滿足:對容許函式集V中任一函式v,成立
,(14)
這裡α(u,v)及F(v)即表示式(11)、(12)。在物理學中,方程(14)是另一變分原理的數學形式,稱為虛功原理或虛位移原理。有限元方法更一般的形式是從虛功方程(14)出發用剖分插值的方式構造一個試探函式空間
,並同時構造一個檢驗函式空間徰;在
中尋找近似解堚,使之對徰中的任一函式ψ,成立
,(15)
當選取徰與
相同時, (15)中的ψ可選為基函式φi,同時用
代入,就得到方程組(13)。
對於非自共軛橢圓運算元L,微分方程邊值問題Lu=ƒ不存在等價的極小值問題,但這時仍可建立虛功方程(14),其中α(u,v)=(Lu,v)F)=(ƒ,v),(·,·)表示L2(Ω)的內積。因此,有限元方法仍然有效。
從極小能量原理出發進行離散化又常稱為裡茨法,從虛功原理出發稱為加廖金法。後者是前者的推廣。
評價
傳統的裡茨-加廖金方法,採取解析函式作為試探函式,不能滿足任意多邊形區域的邊界條件,也不適應間斷介質的要求,對現在的典型例子無能為力。差分方法雖然能夠對付,但由於它對方程(1)及條件(2)、(3)、(4)在處理上不統一,在計算效果及理論分析兩方面都帶來不利。有限元方法正好對這兩者揚長避短,一方面保持了裡茨-加廖金方法從變分原理出發的優點,在提法上有極大的概括性,給離散化帶來統一處理的方便;另一方面又吸收了差分法剖分逼近的優點,能靈活適應各種幾何形狀和間斷介質等複雜情況。有限元方法除了解題效能高強外,還有牢靠的理論基礎,是計算數學理論一大成就。
回顧與展望
有限元方法在中國與西方從不同的實踐背景,沿著不同的學術道路、各自獨立平行地發展起來。在西方,有限元思想在R.庫朗1943年的一篇論文中明確地提出過,但一直沒有受到重視。20世紀50年代中期,歐美工程界J.H.阿吉里斯、R.W.克拉夫等以航空工程為背景,在結構分析和矩陣方法基礎上提出了結構有限元的雛形。60年代初期,引進連續體的單元剖分;60年代中期,逐漸明確有限元法是變分原理加剖分逼近的思想。1968年,西方數學家對有限元法進行數學的理論分析,開始了有限元法在計算數學中的黃金時代。
在中國,60年代初期,馮康、黃鴻慈等結合解決一系列大型水壩建設的應力分析問題,開展了橢圓型邊值問題數值解的系統研究,為克服問題傳統提法中的幾何複雜性和材料複雜性,把能量法與差分法結合在一起,於1964年建立了求解橢圓型邊值問題一套普遍有效的方法,命名為基於變分原理的差分方法,即通稱的有限元方法。與此同時,建立了方法的數學理論基礎。而後20年中,周天孝、唐立民對混合元擬協調元的發展,應隆安等對無限元的發展,馮康等對邊界有限元的發展,石鍾慈對非協調元的發展,林群對有限元外推理論的發展,都作了重要貢獻。
有限元方法對於定常態問題的計算已經獲得公認的巨大成功,對不定常態問題也有良好開展。有限元方法是一個發展著的體系,在前述的基本原則下可有種種變化和發展,特別是可和其他方法結合起來,進一步解決更困難更復雜的數學問題。
參考書目
馮康、石鍾慈著:《彈性結構的數學理論》,科學出版社,北京,1981。
G.斯特朗、G.J.菲克斯同著,崔俊芝、宮著銘譯:《有限元分析》,科學出版社,北京,1983。(G.Strang and G.J.Fix,An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, New Jersey, 1973.)
P.G.Ciarlet,The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
O.C.Zienkiewicz,The Finite Element Method,3rded.,McGraw-Hill, London, 1977.