中考數學難題破解方法
讀懂數學新定義,聯絡新舊知,類比尋辦法;抓數學題目中關鍵詞的閱讀與分析,迅速理解題目數量之間的內在關係,理順變數關係,確定解題思路。重視最基本的策略———綜合與分析,挖掘、整理數學資訊之間的內在關係,理解理解數學問題,分析數量關係、尋找解題竅門,建立數學模型,實現由已知到未知的推導。
1、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較複雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
2、幾何變換法
在數學問題的研究中,常常運用變換法,把複雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一對映。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:***1***平移;***2***旋轉;***3***對稱。
3、歸納法
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯絡起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關係變成數量之間的關係,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0***a、b、c屬於R,a≠0***根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程***組***,解不等式,研究函式乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函式,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定係數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的係數,而後根據題設條件列出關於待定係數的等式,最後解出這些待定係數的值或找到這些待定係數間的某種關係,從而解答數學問題,這種解題方法稱為待定係數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程***組***、一個等式、一個函式、一個等價命題等,架起一座連線條件和結論的橋樑,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法***結論的反面只有一種***與窮舉反證法***結論的反面不只一種***。用反證法證明一個命題的步驟,大體上分為:***1***反設;***2***歸謬;***3***結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大***小***於/不大***小***於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有***n一1***個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,匯出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。匯出的矛盾有如下幾種型別:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
- 中考數學難題破解方法
- 周公解夢夢見紅包是什麼意思
- 高考數學得高分的答題技巧有哪些
- 英文簡歷中的自我評價精選
- 國外名人小故事
- 幼兒輕度食物中毒的症狀
- 高考數學拿高分的複習規劃
- 山西農業大學附屬中學七年級上學期期末語文試卷
- 香菇蒸肉餅的做法美味又營養
- 學生工作處工作總結報告
- 春季喝豆漿有哪些好處用處
- 得了滴蟲性陰道怎麼辦
- 名師指導的中考數學複習衝刺方法
- 英文簡歷中絕不能這些話
- 電影院請勿抽菸的提示語
- 法萊絨毛毯的精美圖片
- 幼兒園教師德育工作總結及工作目標
- 低碳環保生活手抄報內容_關於低碳環保生活手抄報的精美圖片
- 企業黨支部年度工作計劃
- 中考數學常用解題方法技巧
- 康熙字典五行屬金的字
- 康熙字典五行屬木的字
- 康熙字典五行屬水的字
- 康熙字典五行屬火的字
- 康熙字典五行屬土的字