高二文科數學知識點記憶口訣

  學習數學需要講究方法和技巧,用對方法做什麼事情都會事半功倍。下面是小編為大家整理的,希望對大家有所幫助!

  

  一、《集合與函式》

  內容子交併補集,還有冪指對函式。性質奇偶與增減,觀察圖象最明顯。

  複合函式式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。

  指數與對數函式,兩者互為反函式。底數非1的正數,1兩邊增減變故。

  函式定義域好求。分母不能等於0,偶次方根鬚非負,零和負數無對數;

  正切函式角不直,餘切函式角不平;其餘函式實數集,多種情況求交集。

  兩個互為反函式,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸;

  求解非常有規律,反解換元定義域;反函式的定義域,原來函式的值域。

  冪函式性質易記,指數化既約分數;函式性質看指數,奇母奇子奇函式,

  奇母偶子偶函式,偶母非奇偶函式;圖象第一象限內,函式增減看正負。

  二、《三角函式》

  三角函式是函式,象限符號座標注。函式圖象單位圓,週期奇偶增減現。

  同角關係很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;

  中心記上數字1,連結頂點三角形;向下三角平方和,倒數關係是對角,

  頂點任意一函式,等於後面兩根除。誘導公式就是好,負化正後大化小,

  變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化餘偶不變,

  將其後者視銳角,符號原來函式判。兩角和的餘弦值,化為單角好求值,

  餘弦積減正弦積,換角變形眾公式。和差化積須同名,互餘角度變名稱。

  計算證明角先行,注意結構函式名,保持基本量不變,繁難向著簡易變。

  逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

  萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

  1加餘弦想餘弦,1 減餘弦想正弦,冪升一次角減半,升冪降次它為範;

  三角函式反函式,實質就是求角度,先求三角函式值,再判角取值範圍;

  利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集;

  三、《不等式》

  解不等式的途徑,利用函式的性質。對指無理不等式,化為有理不等式。

  高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。

  證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。

  直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。

  還有重要不等式,以及數學歸納法。圖形函式來幫助,畫圖建模構造法。

  四、《數列》

  等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。

  數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,

  取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程式好思考:

  一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程式化:

  首先驗證再假定,從 K向著K加1,推論過程須詳盡,歸納原理來肯定。

  五、《複數》

  虛數單位i一出,數集擴大到複數。一個複數一對數,橫縱座標實虛部。

  對應複平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。

  箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。

  代數運算的實質,有i多項式運算。i的正整數次慕,四個數值週期現。

  一些重要的結論,熟記巧用得結果。虛實互化本領大,複數相等來轉化。

  利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,

  減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。

  三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。

  輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,

  兩個不會為實數,比較大小要不得。複數實數很密切,須注意本質區別。

  六、《排列、組合、二項式定理》

  加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。

  兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。

  排列組合在一起,先選後排是常理。特殊元素和位置,首先注意多考慮。

  不重不漏多思考,捆綁插空是技巧。排列組合恆等式,定義證明建模試。

  關於二項式定理,中國楊輝三角形。兩條性質兩公式,函式賦值變換式。

  七、《立體幾何》

  點線面三位一體,柱錐檯球為代表。距離都從點出發,角度皆為線線成。

  垂直平行是重點,證明須弄清概念。線線線面和麵面、三對之間迴圈現。

  方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。

  立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。

  異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。

  八、《平面解析幾何》

  有向線段直線圓,橢圓雙曲拋物線,引數方程極座標,數形結合稱典範。

  笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。

  兩種思想相輝映,化歸思想打前陣;都說待定係數法,實為方程組思想。

  三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關係判。

  四件工具是法寶,座標思想引數好;平面幾何不能丟,旋轉變換複數求。

  解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。

看過" "的還: