寒假三年級數學手抄報設計圖

  數學是我們日常生活中運算最好的方法,因此學習數學是非常重要的。下面是由小編分享的三年級數學手抄報圖片,希望對你有用。

  寒假的數學手抄報效果圖

  數學手抄報資料:國算的繁榮

  繁榮

  960年,北宋王朝的建立結束了五代十國割據的局面。北宋的農業、手工業、商業空前繁榮,科學技術得到較大發展,火藥、指南針、印刷術三大發明就是在這種經濟高漲的情況下得到廣泛應用。1084年祕書省第一次印刷出版了《算經十書》,1213年鮑擀之又進行翻刻。這些都為數學發展創造了良好的條件。

  從11~14世紀約300年期間,出現了一批著名的數學家和數學著作,如賈憲的《黃帝九章演算法細草》,劉益的《議古根源》,秦九韶的《數書九章》,李冶的《測圓海鏡》、《益古演段》,楊輝的《詳解九章演算法》、《日用演算法》和《楊輝演算法》,朱世傑的《算學啟蒙》、《四元玉鑑》等,很多領域都達到古代數學的高峰,其中一些成就也是當時世界數學的高峰。

  從開平方、開立方到四次以上的開方,在認識上是一個飛躍,實現這個飛躍的就是賈憲。賈憲在當時已發現二項係數表,創造了增乘開方法。這兩項成就對整個宋元數學發生重大的影響,其中賈憲三角比西方的帕斯卡三角形早提出600多年。

  把增乘開方法推廣到數字高次方程***包括係數為負的情形***解法的是劉益。《楊輝演算法》中“田畝比類乘除捷法”卷,介紹了原書中22個二次方程和1個四次方程,後者是用增乘開方法解三次以上的高次方程的最早例子。

  秦九韶是高次方程解法的集大成者,他在《數書九章》中收集了21個用增乘開方法解高次方程***最高次數為10***的問題。為了適應增乘開方法的計算程式,秦九韶把常數項規定為負數,把高次方程解法分成各種型別。當方程的根為非整數時,秦九韶採取繼續求根的小數,或用減根變換方程各次冪的係數之和為分母,常數為分子來表示根的非整數部分,這是《九章算術》和劉徽注處理無理數方法的發展。在求根的第二位數時,秦九韶還提出以一次項係數除常數項為根的第二位數的試除法,這比西方最早的霍納方法早500多年。

  元代天文學家王恂、郭守敬等在《授時歷》中解決了三次函式的內插值問題。秦九韶在“綴術推星”題、朱世傑在《四元玉鑑》“如象招數”題都提到內插法***他們稱為招差術***,朱世傑得到一個四次函式的內插公式。

  用天元***相當於x***作為未知數符號,立出高次方程,古代稱為天元術,這是中國數學史上首次引入符號,並用符號運算來解決建立高次方程的問題。現存最早的天元術著作是李冶的《測圓海鏡》。

  從天元術推廣到二元、三元和四元的高次聯立方程組,是宋元數學家的又一項傑出的創造。留傳至今,並對這一傑出創造進行系統論述的是朱世傑的《四元玉鑑》。

  朱世傑的最大貢獻是提出四元消元法,其方法是先擇一元為未知數,其他元組成的多項式作為這未知數的係數,列成若干個一元高次方程式,然後應用互乘相消法逐步消去這一未知數。重複這一步驟便可消去其他未知數,最後用增乘開方法求解。這是線性方法組解法的重大發展,比西方同類方法早400多年。

  已知黃道與赤道的夾角和太陽從冬至點向春分點執行的黃經餘弧,求赤經餘弧和赤緯度數,是一個解球面直角三角形的問題,傳統曆法都是用內插法進行計算。元代王恂、郭守敬等則用傳統的勾股形解法、沈括用會圓術和天元術解決了這個問題。不過他們得到的是一個近似公式,結果不夠精確。但他們的整個推算步驟是正確無誤的,從數學意義上講,這個方法開闢了通往球面三角法的途徑。

  衰落

  中國從明代開始進入了封建社會的晚期,封建統治者實行極權統治,宣傳唯心主義哲學,施行八股考試製度。在這種情況下,除珠算外,數學發展逐漸衰落。

  數學手抄報內容:數學的理論物件

  起源

  數學***漢語拼音:shùxué;希臘語:μαθηματικ;英語:Mathematics***,源自於古希臘語的μθημα***máthēma***,其有學習、學問、科學之意。古希臘學者視其為哲學之起點,“學問的基礎”。另外,還有個較狹隘且技術性的意義——“數學研究”。即使在其語源內,其形容詞意義凡與學習有關的,亦會被用來指數學的。

  其在英語的複數形式,及在法語中的複數形式+es成mathématiques,可溯至拉丁文的中性複數***Mathematica***,由西塞羅譯自希臘文複數ταμαθηματικ?***tamathēmatiká***。

  在中國古代,數學叫作算術,又稱算學,最後才改為數學。中國古代的算術是六藝之一***六藝中稱為“數”***。

  數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明。但也要充分肯定他們對數學所做出的貢獻。

  理論物件

  基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文字內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展。但當時的代數學和幾何學長久以來仍處於獨立的狀態。

  代數學可以說是最為人們廣泛接受的“數學”。可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學。而數學作為一個研究“數”的學科,代數學也是數學最重要的組成部分之一。幾何學則是最早開始被人們研究的數學分支。

  這要直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯絡到了一起。從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程。而其後更發展出更加精微的微積分。

  現時數學已包括多個分支。創立於二十世紀三十年代的法國的布林巴基學派則認為:數學,至少純數學,是研究抽象結構的理論。結構,就是以初始概念和公理出發的演繹系統。他們認為,數學有三種基本的母結構:代數結構***群,環,域,格……***、序結構***偏序,全序……***、拓撲結構***鄰域,極限,連通性,維數……***。