初一上冊數學總結歸納有哪些

  初一作為一個銜接階段,基礎知識的紮實往往決定了以後數學學習的難易,所以不要忽視初一知識的複習。以下是小編分享給大家的初一上冊數學總結歸納,希望可以幫到你!

  初一上冊數學一元一次方程知識總結

  1、方程是含有未知數的等式。

  2、方程都只含有一個未知數元x,未知數x的指數都是1次,這樣的方程叫做一元一次方程。

  注意:判斷一個方程是否是一元一次方程要抓住三點:

  1未知數所在的式子是整式方程是整式方程;

  2化簡後方程中只含有一個未知數;

  3經整理後方程中未知數的次數是1.

  3、解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。

  4、等式的性質: 1等式兩邊同時加或減同一個數或式子,結果仍相等;

  2等式兩邊同時乘同一個數,或除以同一個不為0的數,結果仍相等。

  注意:運用性質時,一定要注意等號兩邊都要同時變;運用性質2時,一定要注意0這個數.

  3.2 、3.3解一元一次方程

  在實際解方程的過程中,以下步驟不一定完全用上,有些步驟還需重複使用. 因此在解方程時還要注意以下幾點:

  ①去分母:在方程兩邊都乘以各分母的最小公倍數,不要漏乘不含分母的項;分子是一個整體,去分母后應加上括號;去分母與分母化整是兩個概念,不能混淆;

  ②去括號:遵從先去小括號,再去中括號,最後去大括號;不要漏乘括號的項;不要弄錯符號;

  ③移項:把含有未知數的項移到方程的一邊,其他項都移到方程的另一邊移項要變符號 移項要變號;

  ④合併同類項:不要丟項,解方程是同解變形,每一步都是一個方程,不能像計算或化簡題那樣寫能連等的形式;

  ⑤係數化為1::字母及其指數不變係數化成1,在方程兩邊都除以未知數的係數a,得到方程的解。不要分子、分母搞顛倒。

  3.4 實際問題與一元一次方程

  一.概念梳理

  ⑴列一元一次方程解決實際問題的一般步驟是:①審題,特別注意關鍵的字和詞的意義,弄清相關數量關係;②設出未知數注意單位;③根據相等關係列出方程;④解這個方程;⑤檢驗並寫出答案包括單位名稱。

  ⑵一些固定模型中的等量關係及典型例題參照一元一次方程應用題專練學案。

  二、思想方法本單元常用到的數學思想方法小結

  ⑴建模思想:通過對實際問題中的數量關係的分析,抽象成數學模型,建立一元一次方程的思想.

  ⑵方程思想:用方程解決實際問題的思想就是方程思想.

  ⑶化歸思想:解一元一次方程的過程,實質上就是利用去分母、去括號、移項、合併同類項、未知數的係數化為1等各種同解變形,不斷地用新的更簡單的方程來代替原來的方程,最後逐步把方程轉化為x=a的形式. 體現了化“未知”為“已知”的化歸思想.

  ⑷數形結合思想:在列方程解決問題時,藉助於線段示意圖和圖表等來分析數量關係,使問題中的數量關係很直觀地展示出來,體現了數形結合的優越性.

  ⑸分類思想:在解含字母系數的方程和含絕對值符號的方程過程中往往需要分類討論,在解有關方案設計的實際問題的過程中往往也要注意分類思想在過程中的運用.

  三、數學思想方法的學**

  1. 解一元一次方程時,要明確每一步過程都作什麼變形,應該注意什麼問題.

  2. 尋找實際問題的數量關係時,要善於藉助直觀分析法,如表格法,直線分析法和圖示分析法等.

  3. 列方程解應用題的檢驗包括兩個方面:⑴檢驗求得的結果是不是方程的解;

  ⑵是要判斷方程的解是否符合題目中的實際意義.

  四、應用常見等量關係

  行程問題:s=v×t

  工程問題:工作總量=工作效率×時間

  盈虧問題:利潤=售價-成本

  利率=利潤÷成本×100%

  售價=標價×折扣數×10%

  儲蓄利潤問題:利息=本金×利率×時間

  本息和=本金+利息

  初一上冊數學幾何圖形初步知識總結

  4.1 幾何圖形

  1、幾何圖形:從形形色色的物體外形中得到的圖形叫做幾何圖形。

  2、立體圖形:這些幾何圖形的各部分不都在同一個平面內。

  3、平面圖形:這些幾何圖形的各部分都在同一個平面內。

  4、雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯絡的。

  立體圖形中某些部分是平面圖形。

  5、三檢視:從左面看,從正面看,從上面看

  6、展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當剪開,可以展開成平面圖形。這樣的平面圖形稱為相應立體圖形的展開圖。

  7、⑴幾何體簡稱體;包圍著體的是面;面面相交形成線;線線相交形成點;

  ⑵點無大小,線、面有曲直;

  ⑶幾何圖形都是由點、線、面、體組成的;

  ⑷點動成線,線動成面,面動成體;

  ⑸點:是組成幾何圖形的基本元素。

  4.2 直線、射線、線段

  1、直線公理:經過兩點有一條直線,並且只有一條直線。即:兩點確定一條直線。

  2、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交,這個公共點叫做它們的交點。

  3、把一條線段分成相等的兩條線段的點,叫做這條線段的中點。

  4、線段公理:兩點的所有連線中,線段做短兩點之間,線段最短。

  5、連線兩點間的線段的長度,叫做這兩點的距離。

  6、直線的表示方法:如圖的直線可記作直線AB或記作直線m.

  1用幾何語言描述右面的圖形,我們可以說:

  點P在直線AB外,點A、B都在直線AB上.

  2如圖,點O既在直線m上,又在直線n上,我們稱直線

  m、n 相交,交點為O.

  7、在直線上取點O,把直線分成兩個部分,去掉一邊的一個部分,保留點0和另一部分就得到一條射線,如圖就是一條射線,記作射線OM或記作射線a.

  注意:射線有一個端點,向一方無限延伸.

  8、在直線上取兩個點A、B,把直線分成三個部分,去掉兩邊的部分,保留點A、B和中間的一部分就得到一條線段.如圖就是一條線段,記作線段AB或記作線段a.

  注意:線段有兩個端點.

  4.3 角

  1. 角的定義:有公共端點的兩條射線組成的圖形叫角。這個公共端點是角的頂點,兩條射線為角的兩邊。如圖,角的頂點是O,兩邊分別是射線OA、OB.

  2、角有以下的表示方法:

  ① 用三個大寫字母及符號“∠”表示.三個大寫字母分別是頂點和兩邊上的任意點,頂點的字母必須寫在中間.如上圖的角,可以記作∠AOB或∠BOA.

  ② 用一個大寫字母表示.這個字母就是頂點.如上圖的角可記作∠O.當有兩個或兩個以上的角是同一個頂點時,不能用一個大寫字母表示.

  ③ 用一個數字或一個希臘字母表示.在角的內部靠近角的頂點

  處畫一弧線,寫上希臘字母或數字.如圖的兩個角,分別記作∠、∠1

  2、以度、分、秒為單位的角的度量制,叫做角度制。角的度、分、秒是60進位制的。

  1度=60分 1分=60秒 1周角=360度 1平角=180度

  3、角的平分線:一般地,從一個角的頂點出發,把這個角分成兩個相等的角的射線,叫做這個角的平分線。

  4、如果兩個角的和等於90度直角,就說這兩個叫互為餘角,即其中每一個角是另一個角的餘角;

  如果兩個角的和等於180度平角,就說這兩個叫互為補角,即其中每一個角是另一個角的補角。

  5、同角等角的補角相等;同角等角的餘角相等。

  6、方位角:一般以正南正北為基準,描述物體運動的方向。

  初一數學複習建議

  一、適當多做題,養成良好的解題習慣。

  要想學好初一數學,做一定量的題目是必需的,剛開始要從基礎題入手,以課本上的習題為準,反覆練習打好基礎,再找一些初一數學輔導書上的課外習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的初一數學解題規律,熟悉掌握各種題型的解題思路。對於一些易錯題,可備有錯題集,寫出自己錯誤的解題思路和正確的解題過程,兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。

  二、細心地挖掘概念和公式

  很多初一同學對數學概念和公式不夠重視,這類問題反映在三個方面:一是,對初一數學概念的理解只是停留在文字表面,對概念的特殊情況重視不夠。二是,對初一數學概念和公式一味的死記硬背,缺乏與實際題目的聯絡。這樣就不能很好的將學到的知識點與解題聯絡起來。三是,一部分同學不重視對數學公式的記憶。

  三、總結相似的型別題目

  當你學會總結題目,對所做的題目進行分類,知道自己能夠解決哪些題型,掌握了哪些常見的解題方法,還有哪些型別題不會做時,你才真正的掌握了數學這門學科的竅門,才能真正的做到"任它千變萬化,我自巋然不動"。這個問題如果解決不好,在進入初二、初三以後,同學們會發現,有一部分同學天天做題,可成績不升反降。其原因就是,他們天天都在做重複的工作,很多相似的題目反覆做,需要解決的問題卻不能專心攻克。久而久之,不會的題目還是不會,會做的題目也因為缺乏對數學的整體把握,弄的一團糟。

  四、收集自己的典型錯誤和不會的題目

  同學們最難面對的,就是自己的錯誤和困難。但這恰恰又是最需要解決的問題。同學們做題目,有兩個重要的目的:一是,將所學的知識點和技巧,在實際的題目中演練。另外一個就是,找出自己的不足,然後彌補它。這個不足,也包括兩個方面,容易犯的錯誤和完全不會的內容。但現實情況是,同學們只追求做題的數量,草草的應付作業了事,而不追求解決出現的問題,更談不上收集錯誤。

1.初中數學知識點全總結

2.7年級數學知識點總結

3.7年級上冊數學知識點歸納

4.初一數學上冊知識點彙總整理

5.初一歷史上冊知識點重點總結