高考數學小題解題技巧

  在高考數學考試中,由於小題其佔分值比較大,所以有效掌握應對高考數學考試的方法和技巧相當關鍵。下面是小編為你整理關於的內容,希望大家喜歡!

  

  ***1***概念性強:數學中的每個術語、符號,乃至習慣用語,往往都有明確具體的含義,這個特點反映到選擇題中,表現出來的就是試題的概念性強,試題的陳述和資訊的傳遞,都是以數學的學科規定與習慣為依據,決不標新立異。

  ***2***量化突出:數量關係的研究是數學的一個重要的組成部分,也是數學考試中一項主要的內容,在高考的數學選擇題中,定量型的試題所佔的比重很大,而且許多從形式上看為計算定量型選擇題,其實不是簡單或機械的計算問題,其中往往蘊含了對概念、原理、性質和法則的考查,把這種考查與定量計算緊密地結合在一起,形成了量化突出的試題特點。

  ***3***充滿思辨性:這個特點源於數學的高度抽象性、系統性和邏輯性。作為數學選擇題,尤其是用於選擇性考試的高考數學試題,只憑簡單計算或直觀感知便能正確作答的試題不多,幾乎可以說並不存在,絕大多數的選擇題,為了正確作答,或多或少總是要求考生具備一定的觀察、分析和邏輯推斷能力。思辨性的要求充滿題目的字裡行間。

  ***4***形數兼備:數學的研究物件不僅是數,還有圖形,而且對數和圖形的討論與研究,不是孤立開來分割進行,而是有分有合,將它們辯證統一起來。這個特色在高中數學中已經得到充分的顯露。因此,在高考的數學選擇題中,便反映出形數兼備這一特點,其表現是幾何選擇題中常常隱藏著代數問題,而代數選擇題中往往又寓有幾何圖形的問題。因此,數形結合與形數分離的解題方法是高考數學選擇題的一種重要且有效的思想方法與解題方法。

  ***5***解法多樣化:以其他學科比較,一題多解的現象在數學中表現突出,尤其是數學選擇題由於它有備選項,給試題的解答提供了豐富的有用資訊,有相當大的提示性,為解題活動展現了廣闊的天地,大大地增加了解答的途徑和方法。常常潛藏著極其巧妙的解法,有利於對考生思維深度的考查,學習方法。

  解題策略:

  ***1***注意審題。把題目多讀幾遍,弄清這個題目求什麼,已知什麼,求、知之間有什麼關係,把題目搞清楚了再動手答題。

  ***2***答題順序不一定按題號進行。可先從自己熟悉的題目答起,從有把握的題目入手,使自己儘快進入到解題狀態,產生解題的激情和慾望,再解答陌生或不太熟悉的題目。若有時間,再去拼那些把握不大或無從下手的題。這樣也許能超水平發揮。

  ***3***數學選擇題大約有70%的題目都是直接法,要注意對符號、概念、公式、定理及性質等的理解和使用,例如函式的性質、數列的性質就是常見題目。

  ***4***挖掘隱含條件,注意易錯易混點,例如集合中的空集、函式的定義域、應用性問題的限制條件等。

  ***5***方法多樣,不擇手段。高考試題凸現能力,小題要小做,注意巧解,善於使用數形結合、特值***含特殊值、特殊位置、特殊圖形***、排除、驗證、轉化、分析、估算、極限等方法,一旦思路清晰,就迅速作答。不要在一兩個小題上糾纏,杜絕小題大做,如果確實沒有思路,也要堅定信心,題可以不會,但是要做對,即使是蒙也有25%的勝率。

  ***6***控制時間。一般不要超過40分鐘,最好是25分鐘左右完成選擇題,爭取又快又準,為後面的解答題留下充裕的時間,防止超時失分。

  高考數學填空題特點

  填空題和選擇題同屬客觀性試題,它們有許多共同特點:其形態短小精悍,考查目標集中,答案簡短、明確、具體,不必填寫解答過程,評分客觀、公正、準確等等。不過填空題和選擇題也有質的區別。首先,表現為填空題沒有備選項。因此,解答時既有不受誘誤的干擾之好處,又有缺乏提示的幫助之不足,對考生獨立思考和求解,在能力要求上會高一些,長期以來,填空題的答對率一直低於選擇題的答對率,也許這就是一個重要的原因。其次,填空題的結構,往往是在一個正確的命題或斷言中,抽去其中的一些內容***既可以是條件,也可以是結論***,留下空位,讓考生獨立填上,考查方法比較靈活。在對題目的閱讀理解上,較之選擇題,有時會顯得較為費勁。當然並非常常如此,這將取決於命題者對試題的設計意圖。

  填空題的考點少,目標集中,否則,試題的區分度差,其考試信度和效度都難以得到保證。

  這是因為:填空題要是考點多,解答過程長,影響結論的因素多,那麼對於答錯的考生便難以知道其出錯的真正原因,學習效率。有的可能是一竅不通,入手就錯了,有的可能只是到了最後一步才出錯,但他們在答卷上表現出來的情況一樣,得相同的成績,儘管它們的水平存在很大的差異。

  解答題與填空題比較,同屬提供型的試題,但也有本質的區別。首先,解答題應答時,考生不僅要提供出最後的結論,還得寫出或說出解答過程的主要步驟,提供合理、合法的說明。填空題則無此要求,只要填寫結果,省略過程,而且所填結果應力求簡練、概括和準確。其次,試題內涵,解答題比起填空題要豐富得多。解答題的考點相對較多,綜合性強,難度較高。解答題成績的評定不僅看最後的結論,還要看其推演和論證過程,分情況評定分數,用以反映其差別,因而解答題命題的自由度,較之填空題大得多。

  高考數學答題策略技巧

  一、歷年高考

  1.試卷上有參考公式,80%是有用的,它為你的解題指引了方向;

  2.解答題的各小問之間有一種階梯關係,通常後面的問要使用前問的結論。如果前問是證明,即使不會證明結論,該結論在後問中也可以使用。當然,我們也要考慮結論的獨立性;

  3.注意題目中的小括號括起來的部分,那往往是解題的關鍵;

  二、答題策略選擇

  1.先易後難是所有科目應該遵循的原則,而數學捲上顯得更為重要。一般來說,選擇題的後兩題,填空題的後一題,解答題的後兩題是難題。當然,對於不同的學生來說,有的簡單題目也可能是自己的難題,所以題目的難易只能由自己確定。一般來說,小題思考1分鐘還沒有建立解答方案,則應採取“暫時性放棄”,把自己可做的題目做完再回頭解答;

  2.選擇題有其獨特的解答方法,首先重點把握選擇支也是已知條件,利用選擇支之間的關係可能使你的答案更準確。切記不要“小題大做”。注意解答題按步驟給分,根據題目的已知條件與問題的聯絡寫出可能用到的公式、方法、或是判斷。雖然不能完全解答,但是也要把自己的想法與做法寫到答卷上。多寫不會扣分,寫了就可能得分。

  三、答題思想方法

  1.函式或方程或不等式的題目,先直接思考後建立三者的聯絡。首先考慮定義域,其次使用“三合一定理”。

  2.如果在方程或是不等式中出現超越式,優先選擇數形結合的思想方法;

  3.面對含有引數的初等函式來說,在研究的時候應該抓住引數沒有影響到的不變的性質。如所過的定點,二次函式的對稱軸或是……;

  4.選擇與填空中出現不等式的題目,優選特殊值法;

  5.求引數的取值範圍,應該建立關於引數的等式或是不等式,用函式的定義域或是值域或是解不等式完成,在對式子變形的過程中,優先選擇分離引數的方法;

  6.恆成立問題或是它的反面,可以轉化為最值問題,注意二次函式的應用,靈活使用閉區間上的最值,分類討論的思想,分類討論應該不重複不遺漏;

  7.圓錐曲線的題目優先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關,選擇設而不求點差法,與弦的中點無關,選擇韋達定理公式法;使用韋達定理必須先考慮是否為二次及根的判別式;

  8.求曲線方程的題目,如果知道曲線的形狀,則可選擇待定係數法,如果不知道曲線的形狀,則所用的步驟為建系、設點、列式、化簡***注意去掉不符合條件的特殊點***;

  9.求橢圓或是雙曲線的離心率,建立關於a、b、c之間的關係等式即可;

  10.三角函式求週期、單調區間或是最值,優先考慮化為一次同角弦函式,然後使用輔助角公式解答;解三角形的題目,重視內角和定理的使用;與向量聯絡的題目,注意向量角的範圍;

  11.數列的題目與和有關,優選和通公式,優選作差的方法;注意歸納、猜想之後證明;猜想的方向是兩種特殊數列;解答的時候注意使用通項公式及前n項和公式,體會方程的思想;

  12.立體幾何第一問如果是為建系服務的,一定用傳統做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函式值的轉化;錐體體積的計算注意係數1/3,而三角形面積的計算注意係數1/2 ;與球有關的題目也不得不防,注意連線“心心距”創造直角三角形解題;

  13.導數的題目常規的一般不難,但要注意解題的層次與步驟,如果要用建構函式證明不等式,可從已知或是前問中找到突破口,必要時應該放棄;重視幾何意義的應用,高中歷史,注意點是否在曲線上;

  14.概率的題目如果出解答題,應該先設事件,然後寫出使用公式的理由,當然要注意步驟的多少決定解答的詳略;如果有分佈列,則概率和為1是檢驗正確與否的重要途徑;

  15.三選二的三題中,極座標與引數方程注意轉化的方法,不等式題目注意柯西與絕對值的幾何意義,平面幾何重視與圓有關的知積,必要時可以測量;

  16.遇到複雜的式子可以用換元法,使用換元法必須注意新元的取值範圍,有勾股定理型的已知,可使用三角換元來完成;

  17.注意概率分佈中的二項分佈,二項式定理中的通項公式的使用與賦值的方法,排列組合中的列舉法,全稱與特稱命題的否定寫法,取值範或是不等式的解的端點能否取到需單獨驗證,用點斜式或斜截式方程的時候考慮斜率是否存在等;

  18.絕對值問題優先選擇去絕對值,去絕對值優先選擇使用定義;

  19.與平移有關的,注意口訣“左加右減,上加下減”只用於函式,沿向量平移一定要使用平移公式完成;

  20.關於中心對稱問題,只需使用中點座標公式就可以,關於軸對稱問題,注意兩個等式的運用:一是垂直,一是中點在對稱軸上。

  四、每分必爭

  1.答題時間共120分,而你要答分數為150分的考卷,算一算就知道,每分鐘應該解答1分多的題目,所以每1分鐘的時間都是重要的。試卷發到手中首先完成必要的檢查***是否有印刷不清楚的地方***與填塗。之後剩下的時間就馬上看試卷中可能使用到的公式,做到心中有數。用心算簡單的題目,必要時動一動筆也不是不行***你是寫名字或是寫一個字母沒有人去區分***。

  2.在分數上也是每分必爭。你得到89分與得到90分,雖然只差1分,但是有本質的不同,一個是不合格一個是合格。高考中,你得556分與得557分,雖然只差1分,但是它決定你是否可以上重本線,關係到你的一生。所以,在答卷的時候要精益求精。對選擇題的每一個選擇支進行評估,看與你選的相似的那個是不是更準確?填空題的範圍書寫是不是集合形式,是不是少或多了一個端點?是不是有一個解應該捨去而沒舍?解答題的步驟是不是按照公式、代數、結果的格式完成的,應用題是不是設、列、畫***線性歸化***、解、答?根據已知條件你還能聯想到什麼?把它寫在考卷上,也許它就是你需要的關鍵的1分,為什麼不去做呢?

  3.答題的時間緊張是所有同學的感覺,想讓它變成寬鬆的方法只有一個,那就是學會放棄,準確的判斷把該放棄的放棄,就為你多得1分提供了前提。

  4.冷靜一下,表面是耽誤了時間,其實是為自己贏得了機會,可能創造出奇蹟。在頭腦混亂的時候,不防停下來,喝口水,深吸一口氣,再慢慢撥出,就在撥出的同時,你就會得到靈感。

  5.題目分析受挫,很可能是一個重要的已知條件被你忽略,所以重新讀題,仔細讀題才能有所發現,不能停留在某一固定的思維層面不變。聯想你做過的類似的題目的解題方法,把不熟悉的轉化為你熟悉的也許就是成功。

  6.高考只是人生的重要考試之一,其實人生是由每一分鐘組成的。把握好人生的每一分鐘才能真正把握人生。高考就是廣州三模罷了,其實真正的高考是在你生活的每1分鐘裡。

  高考數學衝刺壓軸題解答技巧


        第一重要心態:千萬不要分心

  其實高考的時候怎麼可能分心呢?這裡的分心,不是指你做題目的時候想著考好去哪裡玩。高考時,你是不可能這麼想的。你可以回顧高三以往考試,問一下自己:在做最後一道題目的時候,你有沒有想最後一道題目難不難?不知道能不能做出來我要不要趕快看看最後一題,做不出就去檢查前面題目前面不知道做的怎樣,會不會粗心錯這就是影響你解題的分心,這些就使你不專心。

  專心於現在做的題目,現在做的步驟。現在做哪道題目,腦子裡就只有做好這道題目。現在做哪個步驟,腦子裡就只有做好這個步驟,不去想這步之前對不對,這步之後怎麼做,做好當下!

  第二重要心態:重視審題

  你的心態就是珍惜題目中給你的條件。數學題目中的條件都是不多也不少的,一道給出的題目,不會有用不到的條件,而另一方面,你要相信給出的條件一定是可以做到正確答案的。所以,解題時,一切都必須從題目條件出發,只有這樣,一切才都有可能。

  在數學家波利亞的四個解題步驟中,第一步審題格外重要,審題步驟中,又有這樣一個技巧:當你對整道題目沒有思路時,步驟***1***將題目條件推匯出新條件,步驟***2***將題目結論推導到新結論,步驟***1***就是不要理會題目中你不理解的部分,只要你根據題目條件把能做的先做出來,能推導的先推匯出來,從而得到新條件,高中英語。步驟***2***就是想要得到題目的結論,我需要先得到什麼結論,這就是所謂的新結論。然後在新條件與新結論之間再尋找關係。一道難題,難就難在題目條件與結論的關係難以建立,而你自己推出的新條件與新結論之間的關係往往比原題更容易建立,這也意味著解出題目的可能性也就越大!

  最高境界就是任何一道題目,在你心中沒有難易之分,心中只有根據題目條件推出新條件,一直推到最終的結論。解題心態也應當是寵辱不驚,不以題目易而喜,不以題目難而悲,平常心解題。

  最後還有一點要提醒的是,雖然我們認為最後一題有相當分值的易得分部分,但是畢竟已是整場考試的最後階段,強弩之末勢不能穿魯縞,疲勞不可避免,因此所有同學在做最後一題時,都要格外小心謹慎,避免易得分部分因為疲勞出錯,導致失分的遺憾結果出現。