液壓馬達
[拼音]:yeyaji
[英文]:hydraulic and oil press
用液體作為工作介質傳遞壓強以產生巨大工作力的鍛壓機械。液壓機除用於鍛壓成形外,也可用於矯正、壓裝、打包、壓塊和壓板等。液壓機包括水壓機和油壓機。以水基液體為工作介質的稱為水壓機,以油為工作介質的稱為油壓機。液壓機的規格一般用公稱工作力(千牛)或公稱噸位(噸)表示。鍛造用液壓機多是水壓機,噸位較高。為減小裝置尺寸,大型鍛造水壓機常用較高壓強(35兆帕左右),有時也採用 100兆帕以上的超高壓。其他用途的液壓機一般採用 6~25兆帕的工作壓強。油壓機的噸位比水壓機低。
簡史
1795年,英國的J.布拉默應用帕斯卡原理髮明瞭水壓機,用於打包、榨植物油等。到19世紀中期,英國開始把水壓機用於鍛造,水壓機遂逐漸取代了超大型蒸汽鍛錘。到19世紀末,美國製成126000千牛自由鍛造水壓機。此後,全世界先後製造20餘臺10萬千牛級的自由鍛造水壓機,其中中國製造的有2臺(見彩圖)。隨著電動高壓泵的出現和完善,鍛造水壓機也向較小噸位方向發展。20世紀50年代後出現了小型快速鍛造水壓機,可進行相當於30~50千牛鍛錘所做的工作。40年代,德國製成180000千牛的巨型模鍛水壓機,此後全世界先後製成180000千牛以上的模鍛水壓機18臺,其中中國製造的一臺為300000千牛。
工作原理
圖1為液壓機的工作原理。大、小柱塞的面積分別為S2、S1,柱塞上的作用力分別為F2、F1。根據帕斯卡原理,液體壓強各處相等,即
表示液壓的增益作用,與機械增益一樣,力增大了,但功不增益,因此大柱塞的運動距離是小柱塞運動距離的S1/S 2倍。
工作介質
液壓機所用的工作介質的作用不僅是傳遞壓強,而且保證機器工作部件工作靈敏、可靠、壽命長和洩漏少。液壓機對工作介質的基本要求是:
(1)有適宜的流動性和低的可壓縮性,以提高傳動的效率;
(2)能防鏽蝕;
(3)有好的潤滑效能;
(4)易於密封;
(5)效能穩定,長期工作而不變質。液壓機最初用水作為工作介質,以後改用在水中加入少量乳化油而成的乳化液,以增加潤滑性和減少鏽蝕。19世紀後期出現了以礦物油為工作介質的油壓機。油有良好的潤滑性、防腐蝕性和適度的粘性,有利於改善液壓機的效能。20世紀下半葉出現了新型的水基乳化液,其乳化形態是“油包水”,而不是原來的“水包油”。“油包水”乳化液的外相為油,它的潤滑性和防蝕性接近油,且含油量很少,不易燃燒。但水基乳化液價格較貴,限制了它的推廣。
驅動系統
液壓機的驅動系統主要有泵直接驅動和泵-蓄能器驅動兩種型式(圖2)。
泵直接驅動
這種驅動系統的泵向液壓缸提供高壓工作液體,配流閥用來改變供液方向,溢流閥用來調節系統的限定壓強,同時起安全溢流作用。這種驅動系統環節少,結構簡單,壓強能按所需的工作力自動增減,減少了電能消耗,但須由液壓機的最大工作力和最高工作速度來決定泵及其驅動電機的容量。這種型式的驅動系統多用於中小型液壓機,也有用泵直接驅動的大型(如120000千牛)自由鍛造水壓機。
泵-蓄能器驅動
在這種驅動系統中有一個或一組蓄能器。當泵所供給的高壓工作液有餘量時,由蓄能器儲存;而當供給量不足於需要時,便由蓄能器補充供給。採用這種系統可以按高壓工作液的平均用量選用泵和電動機的容量,但因為工作液的壓強是恆定的,電能消耗量較大,並且系統的環節多,結構比較複雜。這種驅動系統多用於大型液壓機,或者用一套驅動系統驅動數臺液壓機。
結構型式
按作用力的方向區分,液壓機有立式和臥式兩種。多數液壓機為立式,擠壓用液壓機則多用臥式。按結構型式分,液壓機有雙柱、四柱、八柱、焊接框架和多層鋼帶纏繞框架等型式,中、小型立式液壓機還有用C型架式的。C型架式液壓機三面敞開,操作方便,但剛性差。衝壓用的焊接框架式液壓機剛性好,前後敞開,但左右封閉。在上傳動的立式四柱自由鍛造液壓機中,油缸固定在上樑中,柱塞與活動橫樑剛性連線,活動橫樑由立柱導向,在工作液的壓強作用下上下移動。橫樑上有可以前後移動的工作臺。在活動橫樑下和工作臺面上分別安裝上砧和下砧。工作力由上、下橫樑和立柱組成的框架承受。 採用泵-蓄能器驅動的大、中型的自由鍛水壓機常採用三個工作缸,以得到三級工作力。工作缸外還設有向上施加力的平衡缸和回程缸。
參考書目
俞新陸主編:《液壓機》,機械工業出版社,北京,1983。