三苯甲烷染料

[拼音]:shuzhi tianqi yubao changyong jisuan fangfa

[外文]:current computational methods in numerical weather prediction

數值天氣預報中所用的方程大多是非線性的,迄今還沒有一種解析求解方法,常用的是數值求解方法。其中最常用的是差分法,其次是譜方法。

差分法

即用差商代替微商的方法。考慮任意函式f(x,у,t),其偏微商 дf/дx可以用幾種不同的形式來近似表示。如

等。其中Δxf=f(x+Δx,у,t)-f(x -Δx,у,t),δxf=f(x+Δx,у,t)-f(x,у,t);Δx是網格距,至於對自變數у和t的偏微商,只要用у或t代替上面兩式中的x,用Δу或Δt 代替Δx,便可得到類似的表示式。通常稱Δxf/2Δx為中央差,δxf/Δx為向前差。

L.F.理查孫最早將這種方法應用於天氣預報問題。他用中央差代替空間微商,用向前差代替時間微商,認為這樣一步步地計算,就可以作出預報。如對於平流方程:

其相應的差分方程為

其中cx為波速,F為函式,x為空間自變數,t為時間自變數,m 是代表空間的下標,m 是代表時間的下標。依此式則由前一時刻的值,可以求得後一時刻的值。這稱為顯式差分格式。實踐表明,問題並不這樣簡單。如果用一個單波解代入F(x,t),就不難發現,差分方程的解將隨時間無限增長而與真解毫無相似之處。這種現象被稱為“線性不穩定”。若時間也取中央差,則保持數值解的計算穩定性的充分條件是

。這稱為“線性穩定性判據”。經驗表這個條明,件對複雜得多的方程也是需要的。在數值預報中,通常網格距取200公里左右。對過濾模式,cx<50米/秒,Δt允許超過 1小時。如用原始方程模式,cx≈300米/秒,Δt只能是幾分鐘(見大氣模式)。為了使計算穩定,又提出了隱式差分格式。它同上面所述的顯式差分格式不同。如平流方程的隱式差分格式為

這種差分格式雖具有計算穩定的優點,但工作量較大。為了克服這個缺點,1961年曾慶存首先提出了半隱式差分格式,它兼有顯式格式和隱式格式的優點,可以取較長的時間步長而節約大量的計算時間。

不過,對於非線性方程,即使線性穩定性判據得到滿足,計算也不一定是穩定的。1959年,N.A.菲利普斯在實際計算中發現,存在一種無論怎樣縮小 Δt 也不能排除的不穩定現象。他認為是由非線性作用產生的短波被虛假地表示了的所謂“混淆現象”引起的,稱為“非線性不穩定性”。這種不穩定性,並非大氣運動中由於物理原因產生的,而是由於在構造差分格式時,破壞了原微分方程的性質而造成的,因此也稱為計算不穩定性。為了克服這個困難,可以考慮使差分方程保留原微分方程所具有的在計算域內總的守恆性質〔如總能量守恆,總位渦度(見大氣動力方程)平方守恆等〕的格式。這時,在時間積分過程中預報量保持有界,因而這種格式對非線性不穩定性有抑制作用。

由於實際需要,有時還須要製作較小範圍的區域性預報。根據實踐,這種預報以用“套網格”製作效果較好。所謂“套網格”,是指在計算域中置兩種以上網格,其中一部分網格距較大,另一部分較小,而細網格計算域又包含在粗網格計算域中。用這種套網格法可以提高區域性地區的解析度,從而提高預報的準確率。

譜方法

將微分方程組中函式的空間變化用正交函式的級數的前有限項展開,通過一系列積分運算,使微分方程組變換成以展開係數和其對時間的微商的常微分方程組,以求得近似數值解的方法。正交函式的選擇,依賴於區域的幾何形狀。譜方法通常用來解半球或全球問題,並多用球面調和函式。1954年,有人提出用球面調和函式解正壓渦度方程的譜方法,時間外推方法和差分法相同。以後,雖然有不少人繼續研究,但由於這種方法的計算量很大,特別是非線性項,更是如此。長期以來,這種方法一直停留在研究試驗階段。1970年,A.埃利亞森等利用當時剛發展起來的快速富氏變換計算非線性項,空間微商用譜方法進行,乘積運算在網格點上完成,迴避了直接計算非線性項中相互作用係數的大量工作,使計算量大為減少。

一般說來,譜方法的優點是:

(1)空間微商的計算精確,有利於減小位相誤差;

(2)可以避免非線性混淆現象,使非線性不穩定性不易產生;

(3)便於解泊松方程;

(4)能自動並徹底地濾去短波,比一般差分法中用平滑算符好;

(5)解全球或半球問題可以沒有奇異點。缺點是:

(1)表示非線性項所需的計算量和儲存量均較大,計算量隨波數增加得太快;

(2)對分佈不太連續的物理量,容易發生跳躍現象,必須用較多的波才能表示;

(3)象降水那樣的區域性地區天氣現象和其伴隨的潛熱加熱作用,必須知道整個場的預報量,這就經常要把所有的諧波分量重新組合起來。總之,在研究局地現象時還是採用粗細網格相套的差分法更加靈活方便。